434 research outputs found
Deconstruction of Resolution Effects in Angle-Resolved Photoemission
We study how the energy and momentum resolution of angle-resolved
photoemission spectroscopy (ARPES) affects the linewidth, Fermi crossing,
velocity, and curvature of the measured band structure. Based on the fact that
the resolution smooths out the spectra, acting as a low-pass filter, we develop
an iterative simulation scheme that compensates for resolution effects and
allows the fundamental physical parameters to be accurately extracted. By
simulating a parabolic band structure of Fermi-liquid quasiparticles, we show
that this method works for an energy resolution up to 100 meV and a momentum
resolution equal to twice the energy resolution scaled by the Fermi velocity.
Our analysis acquires particular relevance in the hard and soft x-ray regimes,
where a degraded resolution limits the accuracy of the extracted physical
parameters, making it possible to study how the electronic excitations are
modified when the ARPES probing depth increases beyond the surface.Comment: A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/ARPES_resolution.pd
Low temperature ellipsometry of NaV2O5
The dielectric function of alpha'NaV2O5 was measured with electric field
along the a and b axes in the photon energy range 0.8-4.5 eV for temperatures
down to 4K. We observe a pronounced decrease of the intensity of the 1 eV peak
upon increasing temperature with an activation energy of about 25meV,
indicating that a finite fraction of the rungs becomes occupied with two
electrons while others are emptied as temperature increases. No appreciable
shifts of peaks were found s in the valence state of individual V atoms at the
phase transition is very small. A remarkable inflection of this temperature
dependence at the phase transition at 34 K indicates that charge ordering is
associated with the low temperature phase.Comment: Revisions in style and order of presentation. One new figure. In
press in Physical Review B. REVTeX, 4 pages with 4 postscript figure
Determining the Surface-To-Bulk Progression in the Normal-State Electronic Structure of Sr2RuO4 by Angle-Resolved Photoemission and Density Functional Theory
In search of the potential realization of novel normal-state phases on the
surface of Sr2RuO4 - those stemming from either topological bulk properties or
the interplay between spin-orbit coupling (SO) and the broken symmetry of the
surface - we revisit the electronic structure of the top-most layers by ARPES
with improved data quality as well as ab-initio LDA slab calculations. We find
that the current model of a single surface layer (\surd2x\surd2)R45{\deg}
reconstruction does not explain all detected features. The observed
depth-dependent signal degradation, together with the close quantitative
agreement with LDA+SO slab calculations based on the LEED-determined surface
crystal structure, reveal that (at a minimum) the sub-surface layer also
undergoes a similar although weaker reconstruction. This points to a
surface-to-bulk progression of the electronic states driven by structural
instabilities, with no evidence for Dirac and Rashba-type states or surface
magnetism.Comment: 4 pages, 4 figures, 1 table. Further information and PDF available
at: http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Suppressed reflectivity due to spin-controlled localization in a magnetic semiconductor
The narrow gap semiconductor FeSi owes its strong paramagnetism to
electron-correlation effects. Partial Co substitution for Fe produces a
spin-polarized doped semiconductor. The spin-polarization causes suppression of
the metallic reflectivity and increased scattering of charge carriers, in
contrast to what happens in other magnetic semiconductors, where magnetic order
reduces the scattering. The loss of metallicity continues progressively even
into the fully polarized state, and entails as much as a 25% reduction in
average mean-free path. We attribute the observed effect to a deepening of the
potential wells presented by the randomly distributed Co atoms to the majority
spin carriers. This mechanism inverts the sequence of steps for dealing with
disorder and interactions from that in the classic Al'tshuler Aronov approach -
where disorder amplifies the Coulomb interaction between carriers - in that
here, the Coulomb interaction leads to spin polarization which in turn
amplifies the disorder-induced scattering.Comment: 6 figures Submitted to PR
Dirac dispersion and non-trivial Berry's phase in three-dimensional semimetal RhSb3
We report observations of magnetoresistance, quantum oscillations and
angle-resolved photoemission in RhSb, a unfilled skutterudite semimetal
with low carrier density. The calculated electronic band structure of RhSb
entails a quantum number in analogy to
strong topological insulators, and inverted linear valence/conduction bands
that touch at discrete points close to the Fermi level, in agreement with
angle-resolved photoemission results. Transport experiments reveal an
unsaturated linear magnetoresistance that approaches a factor of 200 at 60 T
magnetic fields, and quantum oscillations observable up to 150~K that are
consistent with a large Fermi velocity ( ms), high
carrier mobility ( /Vs), and small three dimensional hole pockets
with nontrivial Berry phase. A very small, sample-dependent effective mass that
falls as low as bare masses scales with Fermi velocity, suggesting
RhSb is a new class of zero-gap three-dimensional Dirac semimetal.Comment: 9 pages, 4 figure
Na2IrO3 as a spin-orbit-assisted antiferromagnetic insulator with a 340 meV gap
We study Na2IrO3 by ARPES, optics, and band structure calculations in the
local-density approximation (LDA). The weak dispersion of the Ir 5d-t2g
manifold highlights the importance of structural distortions and spin-orbit
coupling (SO) in driving the system closer to a Mott transition. We detect an
insulating gap {\Delta}_gap = 340 meV which, at variance with a Slater-type
description, is already open at 300 K and does not show significant temperature
dependence even across T_N ~ 15 K. An LDA analysis with the inclusion of SO and
Coulomb repulsion U reveals that, while the prodromes of an underlying
insulating state are already found in LDA+SO, the correct gap magnitude can
only be reproduced by LDA+SO+U, with U = 3 eV. This establishes Na2IrO3 as a
novel type of Mott-like correlated insulator in which Coulomb and relativistic
effects have to be treated on an equal footing.Comment: Accepted in Physical Review Letters. Auxiliary and related material
can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Doping dependent charge order correlations in electron-doped cuprates
Understanding the interplay between charge order (CO) and other phenomena
(e.g. pseudogap, antiferromagnetism, and superconductivity) is one of the
central questions in the cuprate high-temperature superconductors. The
discovery that similar forms of CO exist in both hole- and electron-doped
cuprates opened a path to determine what subset of the CO phenomenology is
universal to all the cuprates. Here, we use resonant x-ray scattering to
measure the charge order correlations in electron-doped cuprates (La2-xCexCuO4
and Nd2-xCexCuO4) and their relationship to antiferromagnetism, pseudogap, and
superconductivity. Detailed measurements of Nd2-xCexCuO4 show that CO is
present in the x = 0.059 to 0.166 range, and that its doping dependent
wavevector is consistent with the separation between straight segments of the
Fermi surface. The CO onset temperature is highest between x = 0.106 and 0.166,
but decreases at lower doping levels, indicating that it is not tied to the
appearance of antiferromagnetic correlations or the pseudogap. Near optimal
doping, where the CO wavevector is also consistent with a previously observed
phonon anomaly, measurements of the CO below and above the superconducting
transition temperature, or in a magnetic field, show that the CO is insensitive
to superconductivity. Overall these findings indicate that, while verified in
the electron-doped cuprates, material-dependent details determine whether the
CO correlations acquire sufficient strength to compete for the ground state of
the cuprates.Comment: Supplementary information available upon reques
Electronic superlattice revealed by resonant scattering from random impurities in Sr3Ru2O7
Resonant elastic x-ray scattering (REXS) is an exquisite element-sensitive
tool for the study of subtle charge, orbital, and spin superlattice orders
driven by the valence electrons, which therefore escape detection in
conventional x-ray diffraction (XRD). Although the power of REXS has been
demonstrated by numerous studies of complex oxides performed in the soft x-ray
regime, the cross section and photon wavelength of the material-specific
elemental absorption edges ultimately set the limit to the smallest
superlattice amplitude and periodicity one can probe. Here we show -- with
simulations and REXS on Mn-substituted SrRuO -- that these
limitations can be overcome by performing resonant scattering experiments at
the absorption edge of a suitably-chosen, dilute impurity. This establishes
that -- in analogy with impurity-based methods used in electron-spin-resonance,
nuclear-magnetic resonance, and M\"ossbauer spectroscopy -- randomly
distributed impurities can serve as a non-invasive, but now momentum-dependent
probe, greatly extending the applicability of resonant x-ray scattering
techniques
Neel Order and Electron Spectral Functions in the Two-Dimensional Hubbard Model: a Spin-Charge Rotating Frame Approach
Using recently developed quantum SU(2)xU(1) rotor approach, that provides a
self-consistent treatment of the antiferromagnetic state we have performed
electronic spectral function calculations for the Hubbard model on the square
lattice. The collective variables for charge and spin are isolated in the form
of the space-time fluctuating U(1) phase field and rotating spin quantization
axis governed by the SU(2) symmetry, respectively. As a result interacting
electrons appear as composite objects consisting of bare fermions with attached
U(1) and SU(2) gauge fields. This allows us to write the fermion Green's
function in the space-time domain as the product CP^1 propagator resulting from
the SU(2) gauge fields, U(1) phase propagator and the pseudo-fermion
correlation function. As a result the problem of calculating the spectral line
shapes now becomes one of performing the convolution of spin, charge and
pseudo-fermion Green's functions. The collective spin and charge fluctuations
are governed by the effective actions that are derived from the Hubbard model
for any value of the Coulomb interaction. The emergence of a sharp peak in the
electron spectral function in the antiferromagnetic state indicates the decay
of the electron into separate spin and charge carrying particle excitations.Comment: 16 pages, 5 figures, submitted to Phys. Rev.
Rashba spin-splitting control at the surface of the topological insulator Bi2Se3
The electronic structure of Bi2Se3 is studied by angle-resolved photoemission
and density functional theory. We show that the instability of the surface
electronic properties, observed even in ultra-high-vacuum conditions, can be
overcome via in-situ potassium deposition. In addition to accurately setting
the carrier concentration, new Rashba-like spin-polarized states are induced,
with a tunable, reversible, and highly stable spin splitting. Ab-initio slab
calculations reveal that these Rashba state are derived from the 5QL
quantum-well states. While the K-induced potential gradient enhances the spin
splitting, this might be already present for pristine surfaces due to the
symmetry breaking of the vacuum-solid interface.Comment: A high-resolution version can be found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/BiSe_K.pd
- …
