5,651 research outputs found
Applications systems verification and transfer project. Volume 4: Operational applications of satellite snow cover observations. Colorado Field Test Center
The study was conducted on six watersheds ranging in size from 277 km to 3460 km in the Rio Grande and Arkansas River basins of southwestern Colorado. Six years of satellite data in the period 1973-78 were analyzed and snowcover maps prepared for all available image dates. Seven snowmapping techniques were explored; the photointerpretative method was selected as the most accurate. Three schemes to forecast snowmelt runoff employing satellite snowcover observations were investigated. They included a conceptual hydrologic model, a statistical model, and a graphical method. A reduction of 10% in the current average forecast error is estimated when snowcover data in snowmelt runoff forecasting is shown to be extremely promising. Inability to obtain repetitive coverage due to the 18 day cycle of LANDSAT, the occurrence of cloud cover and slow image delivery are obstacles to the immediate implementation of satellite derived snowcover in operational streamflow forecasting programs
Library Design in Combinatorial Chemistry by Monte Carlo Methods
Strategies for searching the space of variables in combinatorial chemistry
experiments are presented, and a random energy model of combinatorial chemistry
experiments is introduced. The search strategies, derived by analogy with the
computer modeling technique of Monte Carlo, effectively search the variable
space even in combinatorial chemistry experiments of modest size. Efficient
implementations of the library design and redesign strategies are feasible with
current experimental capabilities.Comment: 5 pages, 3 figure
Experiments on Lunar Core Composition: Phase Equilibrium Analysis of A Multi-Element (Fe-Ni-S-C) System
Previous geochemical and geophysical experiments have proposed the presence of a small, metallic lunar core, but its composition is still being investigated. Knowledge of core composition can have a significant effect on understanding the thermal history of the Moon, the conditions surrounding the liquid-solid or liquid-liquid field, and siderophile element partitioning between mantle and core. However, experiments on complex bulk core compositions are very limited. One limitation comes from numerous studies that have only considered two or three element systems such as Fe-S or Fe-C, which do not supply a comprehensive understanding for complex systems such as Fe-Ni-S-Si-C. Recent geophysical data suggests the presence of up to 6% lighter elements. Reassessments of Apollo seismological analyses and samples have also shown the need to acquire more data for a broader range of pressures, temperatures, and compositions. This study considers a complex multi-element system (Fe-Ni-S-C) for a relevant pressure and temperature range to the Moon's core conditions
Observations of ozone and related species in the northeast Pacific during the PHOBEA campaigns 1. Ground-based observations at Cheeka Peak
Visual and infrared observations of the distant Comets P/Stephan-Oterma (1980g), Panther (1980u), and Bowell (1980b)
Broadband observations of comets P/Stephan-Oterma (1980g), Bowell (1980b), and Panther (1980u) in the visual [0.5≾ λ(µm)≾0.9] and infrared [1.2≾λ(µm)≾20] wavelength regions are reported together with measurements in the 1.5-2.4-µm wavelength range having 5% spectral resolution. The visual data indicate the existence of solid grains in extended halos around the nuclei of the three comets. The visual photometric profiles of comets P/Stephan-
Oterma and Panther are interpreted as evidence that grains around Panther and those close to the nucleus of P/Stephan-Oterma are sublimating. Broadband near-infrared and thermal infrared measurements of comet Panther suggest the presence of 2—4-µm radius particles in the coma. The particles within a 5.8X 10^6-m diameter region centered on the comet have a total cross section of 10^8 m^2 and a near-infrared geometric albedo of about 14%. Comet Bowell presents a total cross section of 3 X 10^8 m^2 within a 1.2 X 10^7-m region centered on the comet and its coma grains also have an albedo of 14%. The near-infrared spectrum of P/Stephan-Oterma is a featureless solar-reflection continuum. The near-infrared spectra of Bowell and Panther exhibit features which are similar in the two comets. The spectral features are not due to H_2O, CH_4, or CO_2 ices nor to emissions from gases released from the nuclei nor to reflection from mineral grains of known composition in the comae. The spectrum of solid ammonia provides the best match to the near infrared; it is nevertheless significantly different from the comet spectra. The synthesis of the visual data with the infrared data is attempted in terms of a model involving a mantle of volatile material on the nuclei of Bowell and Panther, but not on P/Stephan-Oterma. The composition of the mantle cannot be exactly specified from the existing data but a complex molecule incorporating the N-H bond may be present
Evaluation of the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010) Using ICESat Geodetic Control
Supported by NASA's Earth Surface and Interior (ESI) Program, we are producing a global set of Ground Control Points (GCPs) derived from the Ice, Cloud and land Elevation Satellite (ICESat) altimetry data. From February of 2003, to October of 2009, ICESat obtained nearly global measurements of land topography (+/- 86deg latitudes) with unprecedented accuracy, sampling the Earth's surface at discrete approx.50 m diameter laser footprints spaced 170 m along the altimetry profiles. We apply stringent editing to select the highest quality elevations, and use these GCPs to characterize and quantify spatially varying elevation biases in Digital Elevation Models (DEMs). In this paper, we present an evaluation of the soon to be released Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010). Elevation biases and error statistics have been analyzed as a function of land cover and relief. The GMTED2010 products are a large improvement over previous sources of elevation data at comparable resolutions. RMSEs for all products and terrain conditions are below 7 m and typically are about 4 m. The GMTED2010 products are biased upward with respect to the ICESat GCPs on average by approximately 3 m
Striation and convection in penumbral filaments
Observations with the 1-m Swedish Solar Telescope of the flows seen in
penumbral filaments are presented. Time sequences of bright filaments show
overturning motions strikingly similar to those seen along the walls of small
isolated structures in the active regions. The filaments show outward
propagating striations with inclination angles suggesting that they are aligned
with the local magnetic field. We interpret it as the equivalent of the
striations seen in the walls of small isolated magnetic structures. Their
origin is then a corrugation of the boundary between an overturning convective
flow inside the filament and the magnetic field wrapping around it. The outward
propagation is a combination of a pattern motion due to the downflow observed
along the sides of bright filaments, and the Evershed flow. The observed short
wavelength of the striation argues against the existence of a dynamically
significant horizontal field inside the bright filaments. Its intensity
contrast is explained by the same physical effect that causes the dark cores of
filaments, light bridges and `canals'. In this way striation represents an
important clue to the physics of penumbral structure and its relation with
other magnetic structures on the solar surface. We put this in perspective with
results from the recent 3-D radiative hydrodynamic simulations.Comment: Accepted for publication in A&
- …
