41 research outputs found
Activation of Wnt Signaling by Chemically Induced Dimerization of LRP5 Disrupts Cellular Homeostasis
Wnt signaling is crucial for a variety of biological processes, including body axis formation, planar polarity, stem cell maintenance and cellular differentiation. Therefore, targeted manipulation of Wnt signaling in vivo would be extremely useful. By applying chemical inducer of dimerization (CID) technology, we were able to modify the Wnt co-receptor, low-density lipoprotein (LDL)-receptor-related protein 5 (LRP5), to generate the synthetic ligand inducible Wnt switch, iLRP5. We show that iLRP5 oligomerization results in its localization to disheveled-containing punctate structures and sequestration of scaffold protein Axin, leading to robust β-catenin-mediated signaling. Moreover, we identify a novel LRP5 cytoplasmic domain critical for its intracellular localization and casein kinase 1-dependent β-catenin signaling. Finally, by utilizing iLRP5 as a Wnt signaling switch, we generated the Ubiquitous Activator of β-catenin (Ubi-Cat) transgenic mouse line. The Ubi-Cat line allows for nearly ubiquitous expression of iLRP5 under control of the H-2Kb promoter. Activation of iLRP5 in isolated prostate basal epithelial stem cells resulted in expansion of p63+ cells and development of hyperplasia in reconstituted murine prostate grafts. Independently, iLRP5 induction in adult prostate stroma enhanced prostate tissue regeneration. Moreover, induction of iLRP5 in male Ubi-Cat mice resulted in prostate tumor progression over several months from prostate hyperplasia to adenocarcinoma. We also investigated iLRP5 activation in Ubi-Cat-derived mammary cells, observing that prolonged activation results in mammary tumor formation. Thus, in two distinct experimental mouse models, activation of iLRP5 results in disruption of tissue homeostasis, demonstrating the utility of iLRP5 as a novel research tool for determining the outcome of Wnt activation in a precise spatially and temporally determined fashion
Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells
Background: Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. Methodology/Principal Findings: Here we show that depletion of Tpr by RNA interference triggers G0–G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. Conclusions: Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins
Three Novel Downstream Promoter Elements Regulate MHC Class I Promoter Activity in Mammalian Cells
BACKGROUND: MHC CLASS I TRANSCRIPTION IS REGULATED BY TWO DISTINCT TYPES OF REGULATORY PATHWAYS: 1) tissue-specific pathways that establish constitutive levels of expression within a given tissue and 2) dynamically modulated pathways that increase or decrease expression within that tissue in response to hormonal or cytokine mediated stimuli. These sets of pathways target distinct upstream regulatory elements, have distinct basal transcription factor requirements, and utilize discrete sets of transcription start sites within an extended core promoter. METHODOLOGY/PRINCIPAL FINDINGS: We studied regulatory elements within the MHC class I promoter by cellular transfection and in vitro transcription assays in HeLa, HeLa/CIITA, and tsBN462 of various promoter constructs. We have identified three novel MHC class I regulatory elements (GLE, DPE-L1 and DPE-L2), located downstream of the major transcription start sites, that contribute to the regulation of both constitutive and activated MHC class I expression. These elements located at the 3' end of the core promoter preferentially regulate the multiple transcription start sites clustered at the 5' end of the core promoter. CONCLUSIONS/SIGNIFICANCE: Three novel downstream elements (GLE, DPE-L1, DPE-L2), located between +1 and +32 bp, regulate both constitutive and activated MHC class I gene expression by selectively increasing usage of transcription start sites clustered at the 5' end of the core promoter upstream of +1 bp. Results indicate that the downstream elements preferentially regulate TAF1-dependent, relative to TAF1-independent, transcription
The human gephyrin (GPHN) gene: structure, chromosome localization and expression in non-neuronal cells
TPR (translocated promoter region)
Review on TPR (translocated promoter region), with data on DNA, on the protein encoded, and where the gene is implicated
GPHN (gephyrin)
Review on GPHN (gephyrin), with data on DNA, on the protein encoded, and where the gene is implicated
Complex Regulation of MHC Class I Expression: Constitutive and Modulated Patterns of Expression
Functional integrity of green fluorescent protein conjugated glycine receptor channel
The alpha subunit (alpha Z1) of the zebrafish glycine receptor (GlyR) has been N-terminus fused with green fluorescent protein (GFP). We found that both pharmacological and electrophysiological properties of this chimeric alpha Z1-GFP are indistinguishable from those of the wild-type receptor when expressed in Xenopus oocytes and cell lines. The apparent affinities of this receptor for agonists (glycine, taurine and GABA), and the antagonist (strychnine) are unchanged, and single channel kinetics are not altered. In the same expression systems, alpha Z1-GFP was visualized using fluorescence microscopy. Fluorescence was distributed anisotropically across cellular membranes. In addition to the Golgi apparatus and endoplasmic reticulum, its presence was also detected on the plasmalemma, localized at discrete hot-spots which were identified as sites of high membrane turnover. Overall, the preservation in alpha Z1-GFPs of the wild type receptor functional properties makes it a promising new tool for further in situ investigations of GlyR expression, distribution and function
