1,420 research outputs found

    Feedback cooling of a cantilever's fundamental mode below 5 mK

    Full text link
    We cool the fundamental mechanical mode of an ultrasoft silicon cantilever from a base temperature of 2.2 K to 2.9 +/- 0.3 mK using active optomechanical feedback. The lowest observed mode temperature is consistent with limits determined by the properties of the cantilever and by the measurement noise. For high feedback gain, the driven cantilever motion is found to suppress or "squash" the optical interferometer intensity noise below the shot noise level.Comment: 4 pages, 6 figure

    Nuclear spin relaxation induced by a mechanical resonator

    Full text link
    We report on measurements of the spin lifetime of nuclear spins strongly coupled to a micromechanical cantilever as used in magnetic resonance force microscopy. We find that the rotating-frame correlation time of the statistical nuclear polarization is set by the magneto-mechanical noise originating from the thermal motion of the cantilever. Evidence is based on the effect of three parameters: (1) the magnetic field gradient (the coupling strength), (2) the Rabi frequency of the spins (the transition energy), and (3) the temperature of the low-frequency mechanical modes. Experimental results are compared to relaxation rates calculated from the spectral density of the magneto-mechanical noise.Comment: 4 pages, 4 figure

    Organische Dünger in Topfkulturen auf dem Prüfstand - wie steht es mit der Stickstofffreisetzung?

    Get PDF
    Matching nitrogen demand of plants and N release of organic fertilizers with respect to amount and timing is one key for successful cultivation of organic ornamentals. Thereby for plants with a low to moderate N demand growers can add the fertilizer as complete preplant application (CPA). For plants with a high N demand splitting fertilization in a reduced preplant application combined with an additional fertigation (RPA+F) is preferable. Aim of the current research was the investigation of N release of organic fertilizers in incubation experiments. Results of the incubation experiment were linked to a pot trial with pelargonium. Incubation experiments reveal that most fertilizers release about 40 to 50 % of total N and most nitrogen is released within the first 21 days. Only for sheep wool a delay of N release up to ten days was found. CPA using sheep wool and RPA+F (irrespective of fertilizer) give the best results. The delayed release pattern of sheep wool seems to match best N demand of plants

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure

    Strong Electron-Phonon Coupling in Superconducting MgB2_2: A Specific Heat Study

    Full text link
    We report on measurements of the specific heat of the recently discovered superconductor MgB2_2 in the temperature range between 3 and 220 K. Based on a modified Debye-Einstein model, we have achieved a rather accurate account of the lattice contribution to the specific heat, which allows us to separate the electronic contribution from the total measured specific heat. From our result for the electronic specific heat, we estimate the electron-phonon coupling constant λ\lambda to be of the order of 2, significantly enhanced compared to common weak-coupling values 0.4\leq 0.4. Our data also indicate that the electronic specific heat in the superconducting state of MgB2_2 can be accounted for by a conventional, s-wave type BCS-model.Comment: 4 pages, 4 figure

    Sensing remote nuclear spins

    Full text link
    Sensing single nuclear spins is a central challenge in magnetic resonance based imaging techniques. Although different methods and especially diamond defect based sensing and imaging techniques in principle have shown sufficient sensitivity, signals from single nuclear spins are usually too weak to be distinguished from background noise. Here, we present the detection and identification of remote single C-13 nuclear spins embedded in nuclear spin baths surrounding a single electron spins of a nitrogen-vacancy centre in diamond. With dynamical decoupling control of the centre electron spin, the weak magnetic field ~10 nT from a single nuclear spin located ~3 nm from the centre with hyperfine coupling as weak as ~500 Hz is amplified and detected. The quantum nature of the coupling is confirmed and precise position and the vector components of the nuclear field are determined. Given the distance over which nuclear magnetic fields can be detected the technique marks a firm step towards imaging, detecting and controlling nuclear spin species external to the diamond sensor
    corecore