29 research outputs found

    Characterisation of multiple conducting permeable objects in metal detection by polarizability tensors

    Get PDF
    Realistic applications in metal detection involve multiple inhomogeneous‐conducting permeable objects, and the aim of this paper is to characterise such objects by polarizability tensors. We show that, for the eddy current model, the leading order terms for the perturbation in the magnetic field, due to the presence of N small conducting permeable homogeneous inclusions, comprises of a sum of N terms with each containing a complex symmetric rank 2 polarizability tensor. Each tensor contains information about the shape and material properties of one of the objects and is independent of its position. The asymptotic expansion we obtain extends a previously known result for a single isolated object and applies in situations where the object sizes are small and the objects are sufficiently well separated. We also obtain a second expansion that describes the perturbed magnetic field for inhomogeneous and closely spaced objects, which again characterises the objects by a complex symmetric rank 2 tensor. The tensor's coefficients can be computed by solving a vector valued transmission problem, and we include numerical examples to illustrate the agreement between the asymptotic formula describing the perturbed fields and the numerical prediction. We also include algorithms for the localisation and identification of multiple inhomogeneous objects

    Identification of metallic objects using spectral MPT signatures: object characterisation and invariants

    Get PDF
    The early detection of terrorist threat objects, such as guns and knives, through improved metal detection, has the potential to reduce the number of attacks and improve public safety and security. To achieve this, there is considerable potential to use the felds applied and measured by a metal detector to discriminate between different shapes and different metals since, hidden within the field perturbation, is object characterisation information. The magnetic polarizability tensor (MPT) offers an economical characterisation of metallic objects that can be computed for different threat and non-threat objects and has an established theoretical background, which shows that the induced voltage is a function of the hidden object's MPT coeffcients. In this paper, we describe the additional characterisation information that measurements of the induced voltage over a range of frequencies offer compared to measurements at a single frequency. We call such object characterisations its MPT spectral signature. Then, we present a series of alternative rotational invariants for the purpose of classifying hidden objects using MPT spectral signatures. Finally, we include examples of computed MPT spectral signature characterisations of realistic threat and non-threat objects that can be used to train machine learning algorithms for classification purposes

    Assessing the feasibility of detecting a hemorrhagic type stroke using a 16 channel magnetic induction system

    No full text
    Magnetic induction tomography (MIT) has been proposed as a possible method for imaging stroke in the human brain. Hemorrhagic stroke is characterized by local blood accumulation in the brain and exhibits a greater change in conductivity with frequency compared to other tissues which is observed in the frequency range of interest [1-10] MHz. In this study, we investigate the feasibility of detecting hemorrhagic stroke using absolute and frequency difference imaging. For this purpose, a model of the head originally obtained from MRI and X-ray data was used, to which a large stroke (50 ml) was added. In addition, a model of a 16 channel circular array MIT system was employed. The received coil induced voltages were computed using a custom eddy current solver, based on the finite difference method. For absolute imaging, the induced voltages at the receiver coils were calculated from various coil combinations at 10 MHz frequency together with anticipated systematic errors and biases (orientation and displacement of the coils, movement of the head). The induced voltage noise due to these systematic inaccuracies was compared with the voltage change due to the stroke. In order to decrease the impact of this noise, frequency difference was also considered, whereby measurements were performed at another frequency (1MHz) and subtracted. Comparison results are presented and a realistic picture is delivered with to regard the required mechanical stability and electronics accuracy for this particular medical application © 2010 IOP Publishing Ltd
    corecore