7,765 research outputs found
Multi frequency evaporative cooling to BEC in a high magnetic field
We demonstrate a way to circumvent the interruption of evaporative cooling
observed at high bias field for Rb atoms trapped in the (F=2, m=+2)
ground state. Our scheme uses a 3-frequencies-RF-knife achieved by mixing two
RF frequencies. This compensates part of the non linearity of the Zeeman
effect, allowing us to achieve BEC where standard 1-frequency-RF-knife
evaporation method did not work. We are able to get efficient evaporative
cooling, provided that the residual detuning between the transition and the RF
frequencies in our scheme is smaller than the power broadening of the RF
transitions at the end of the evaporation ramp.Comment: 12 pages, 2 figure
Quantum spin fluctuations in the dipolar Heisenberg-like rare earth pyrochlores
The magnetic pyrochlore oxide materials of general chemical formula R2Ti2O7
and R2Sn2O7 (R = rare earth) display a host of interesting physical behaviours
depending on the flavour of rare earth ion. These properties depend on the
value of the total magnetic moment, the crystal field interactions at each rare
earth site and the complex interplay between magnetic exchange and long-range
dipole-dipole interactions. This work focuses on the low temperature physics of
the dipolar isotropic frustrated antiferromagnetic pyrochlore materials.
Candidate magnetic ground states are numerically determined at zero temperature
and the role of quantum spin fluctuations around these states are studied using
a Holstein-Primakoff spin wave expansion to order 1/S. The results indicate the
strong stability of the proposed classical ground states against quantum
fluctuations. The inclusion of long range dipole interactions causes a
restoration of symmetry and a suppression of the observed anisotropy gap
leading to an increase in quantum fluctuations in the ground state when
compared to a model with truncated dipole interactions. The system retains most
of its classical character and there is little deviation from the fully ordered
moment at zero temperature.Comment: Latex2e, 18 pages, 4 figures, IOP forma
A novel role for the root cap in phosphate uptake and homeostasis
The root cap has a fundamental role in sensing environmental cues as well as regulating root growth via altered meristem activity. Despite this well-established role in the control of developmental processes in roots, the root cap's function in nutrition remains obscure. Here, we uncover its role in phosphate nutrition by targeted cellular inactivation or phosphate transport complementation in Arabidopsis, using a transactivation strategy with an innovative high-resolution real-time P-33 imaging technique. Remarkably, the diminutive size of the root cap cells at the root-to-soil exchange surface accounts for a significant amount of the total seedling phosphate uptake (approximately 20%). This level of Pi absorption is sufficient for shoot biomass production (up to a 180% gain in soil), as well as repression of Pi starvation-induced genes. These results extend our understanding of this important tissue from its previously described roles in environmental perception to novel functions in mineral nutrition and homeostasis control
Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors
In high Tc superconductors the magnetic and electronic properties are
determined by the probability that valence electrons virtually jump from site
to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion
and favored by hopping integrals. The spatial extent of the latter is related
to transport properties, including superconductivity, and to the dispersion
relation of spin excitations (magnons). Here, for three antiferromagnetic
parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer
Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical
atoms, we compare the magnetic spectra measured by resonant inelastic x-ray
scattering over a significant portion of the reciprocal space and with
unprecedented accuracy. We observe that the absence of apical oxygens increases
the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D
exchange-bond network. These results establish a corresponding relation between
the exchange interactions and the crystal structure, and provide fresh insight
into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference
Study of the B +→ J / ψ Λ ¯ p decay in proton-proton collisions at √s = 8 TeV
A study of the B +→ J / ψ Λ ¯ p decay using proton-proton collision data collected at s = 8 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 19.6 fb−1, is presented. The ratio of branching fractions B(B+→J/ψΛ¯p)/B(B+→J/ψK∗(892)+) is measured to be (1.054 ± 0.057(stat) ± 0.035(syst) ± 0.011(B))%, where the last uncertainty reflects the uncertainties in the world-average branching fractions of Λ ¯ and K*(892) + decays to reconstructed final states. The invariant mass distributions of the J / ψ Λ ¯ , J/ψp, and Λ ¯ p systems produced in the B +→ J / ψ Λ¯ p decay are investigated and found to be inconsistent with the pure phase space hypothesis. The analysis is extended by using a model-independent angular amplitude analysis, which shows that the observed invariant mass distributions are consistent with the contributions from excited kaons decaying to the Λ ¯ p system. [Figure not available: see fulltext.
Search for new neutral Higgs bosons through the H → ZA→ ℓ+ℓ−b b ¯ process in pp collisions at √s = 13 TeV
This paper reports on a search for an extension to the scalar sector of the standard model, where a new CP-even (odd) boson decays to a Z boson and a lighter CP-odd (even) boson, and the latter further decays to a b quark pair. The Z boson is reconstructed via its decays to electron or muon pairs. The analysed data were recorded in proton-proton collisions at a center-of-mass energy s = 13 TeV, collected by the CMS experiment at the LHC during 2016, corresponding to an integrated luminosity of 35.9 fb−1. Data and predictions from the standard model are in agreement within the uncertainties. Upper limits at 95% confidence level are set on the production cross section times branching fraction, with masses of the new bosons up to 1000 GeV. The results are interpreted in the context of the two-Higgs-doublet model. [Figure not available: see fulltext.]
- …
