2,951 research outputs found
Two Types of K⁺ Channel Subunit, Erg1 and KCNQ2/3, Contribute to the M-Like Current in a Mammalian Neuronal Cell
The potassium M current was originally identified in sympathetic ganglion cells, and analogous currents have been reported in some central neurons and also in some neural cell lines. It has recently been suggested that the M channel in sympathetic neurons comprises a heteromultimer of KCNQ2 and KCNQ3 (Wang et al., 1998) but it is unclear whether all other M-like currents are generated by these channels. Here we report that the M-like current previously described in NG108–15 mouse neuroblastoma x rat glioma cells has two components, “fast” and “slow”, that may be differentiated kinetically and pharmacologically. We provide evidence from PCR analysis and expression studies to indicate that these two components are mediated by two distinct molecular species of K+ channel: the fast component resembles that in sympathetic ganglia and is probably carried byKCNQ2/3 channels, whereas the slow component appears to be carried by merg1a channels. Thus, the channels generating M-like currents in different cells may be heterogeneous in molecular composition
Achievement Goal Promotion at University: Social Desirability and Social Utility of Mastery and Performance Goals
sous presseInternational audienc
Sources and sinks of methane and carbon dioxide exchanges in mountain forest in Equatorial Africa
Magnetic and Metal-Insulator Transitions in beta-Na0.5CoO2 and gamma-K0.5CoO2 -NMR and Neutron Diffraction Studies-
Co-oxides beta-Na0.5CoO2 and gamma-K0.5CoO2 have been prepared by the Na
de-intercalation from alpha-NaCoO2 and by the floating-zone method,
respectively. It has been found that successive phase transitions take place at
temperatures Tc1 and Tc2 in both systems. The appearance of the internal
magnetic field at Tc1 with decreasing temperature T indicates that the
antiferromagnetic order exists at T < Tc1, as in gamma-Na0.5CoO2. For
beta-Na0.5CoO2, the transition temperatures and the NMR parameters determined
from the data taken for magnetically ordered state are similar to those of
gamma-Na0.5CoO2, indicating that the difference of the stacking ways of the
CoO2 layers between these systems do not significantly affect their physical
properties. For gamma-K0.5CoO2, the quantitative difference of the physical
quantities are found from those of beta- and gamma-Na0.5CoO2. The difference
between the values of Tci (i = 1 and 2) of these systems might be explained by
considering the distance between CoO2 layers.Comment: 8 pages, 14 figures, 1 Tabl
SMEs and Certified Management Standards: The Effect of Motives and Timing on Implementation and Commitment
Existing research on certifiable management standards (CMS) and corporate social responsibility (CSR) tends to focus on large companies and is characterised by disagreement about the role of these standards as drivers of CSR. We contribute to the literature by shifting the analytical focus to the behaviour of small and medium-sized enterprises (SMEs) that subscribe to multiple CSR related standards. We argue that, in respect of motive and commitment, SMEs are not as different from large companies as the literature suggests, as they are guided by similar institutional and economic motives. Results, based on ISO 9001, ISO 14001 and OHSAS 18001 certified SMEs in Greece, demonstrate that later adopters are more susceptible to coercive and mimetic motives and are less likely to commit fully to the CMS requirements, while earlier adopters react to normative motives and considerations of internal efficiency gains and tend to carry out CMS requirements with greater diligence
Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2
The determination by powder neutron diffraction of the ambient temperature
crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is
reported. The structures consist of triangular CoO2 layers with Na ions
distributed in intervening charge reservoir layers. The shapes of the CoO6
octahedra that make up the CoO2 layers are found to be critically dependent on
the electron count and on the distribution of the Na ions in the intervening
layers, where two types of Na sites are available. Correlation of the shapes of
cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram
in NaxCoO2 is made, showing how structural and electronic degrees of freedom
can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review
Bisphosphonates alter trabecular bone collagen cross-linking and isomerization in beagle dog vertebra
Changes in organic matrix may contribute to the anti-fracture efficacy of anti-remodeling agents. Following one year of treatment in beagle dogs, bisphosphonates alter the organic matrix of vertebral trabecular bone, while raloxifene had no effect. These results show that pharmacological suppression of turnover alters the organic matrix component of bone.
INTRODUCTION:
The collagen matrix contributes significantly to a bone's fracture resistance yet the effects of anti-remodeling agents on collagen properties are unclear. The goal of this study was to assess changes in collagen cross-linking and isomerization following anti-remodeling treatment.
METHODS:
Skeletally mature female beagles were treated for one year with oral doses of vehicle (VEH), risedronate (RIS; 3 doses), alendronate (ALN; 3 doses), or raloxifene (RAL; 2 doses). The middle dose of RIS and ALN and the lower dose of RAL approximate doses used for treatment of post menopausal osteoporosis. Vertebral trabecular bone matrix was assessed for collagen isomerization (ratio of alpha/beta C-telopeptide [CTX]), enzymatic (pyridinoline [PYD] and deoxypyridinoline [DPD]), and non-enzymatic (pentosidine [PEN]) cross-links.
RESULTS:
All doses of both RIS and ALN increased PEN (+34-58%) and the ratio of PYD/DPD (+14-26%), and decreased the ratio of alpha/beta CTX (-29-56%) compared to VEH. RAL did not alter any collagen parameters. Bone turnover rate was significantly correlated to PEN (R = -0.664), alpha/beta CTX (R = 0.586), and PYD/DPD (R = -0.470).
CONCLUSIONS:
Bisphosphonate treatment significantly alters properties of bone collagen suggesting a contribution of the organic matrix to the anti-fracture efficacy of this drug class.The authors thank Dr. Keith Condon, Diana Jacob, Mary Hooser, and Lauren Waugh for histological preparation. This work was supported by NIH Grants AR047838 and AR007581 and research grants from The Alliance for Better Bone Health (Procter & Gamble Pharmaceuticals and sanofi-aventis), and Lilly Research Laboratories, as well as an unrestricted grant from Eli Lilly to INSERM. Merck and Co. kindly provided the alendronate. This investigation utilized an animal facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR10601-01 from the National Center for Research Resources, National Institutes of Health
IC immunity modeling process validation using on-chip measurements
International audienceDeveloping integrated circuit (IC) immunity models and simulation flow has become one of the major concerns of ICs suppliers to predict whether a chip will pass susceptibility tests before fabrication and avoid redesign cost. This paper presents an IC immunity modeling process including the standard immunity test applied to a dedicated test chip. An on-chip voltage sensor is used to characterize the radio frequency interference propagation inside the chip and thus validate the immunity modeling process
Midwave infrared InAs/GaSb superlattice photodiode with a dopant-free p–n junction
Midwave infrared (MWIR) InAs/GaSb superlattice (SL) photodiode with a dopant-free p–n junction was fabricated by molecular beam epitaxy on GaSb substrate. Depending on the thickness ratio between InAs and GaSb layers in the SL period, the residual background carriers of this adjustable material can be either n-type or p-type. Using this flexibility in residual doping of the SL material, the p–n junction of the device is made with different non-intentionally doped (nid) SL structures. The SL photodiode processed shows a cut-off wavelength at 4.65 μm at 77 K, residual carrier concentration equal to 1.75 × 1015 cm−3, dark current density as low as 2.8 × 10−8 A/cm2 at 50 mV reverse bias and R0A product as high as 2 × 106 Ω cm2. The results obtained demonstrate the possibility to fabricate a SL pin photodiode without intentional doping the pn junction
ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides
The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways
- …
