671 research outputs found

    Ice magnetization in the EPICA-Dome C ice core: Implication for dust sources during glacial and interglacial periods

    Get PDF
    Isothermal remanent magnetization and insoluble dust content of ice samples from EPICA-Dome C ice core were measured to characterize the magnetic properties of atmospheric dust. Despite the larger concentration of dust aerosol during glacial stages, the magnetization of the dust fraction was found to be higher during interglacials and exhibits a larger variability. Changes in magnetic mineralogy of aerosol dust in ice from different climatic stages were also characterized using coercivity of remanence. Variations of magnetic properties of dust from glacial to interglacial stages indicate changes in dust provenance, in agreement with previous results based on geochemical analysis. However, the extremely large magnetizations of some interglacial samples also suggest that episodical eolian deposition from highly magnetic deposits occurred during interglacial periods

    Magnetization of polar ice: a measurement of terrestrial dust and extraterrestrial fallout

    Get PDF
    Laboratory-induced remanent magnetization of polar ice constitutes a measurement of the magnetization carried by the ferromagnetic dust particles in the ice. This non-destructive technique provides a novel kind of information on the dust deposited on the surface of polar ice sheets. Measurements made on ice samples from Greenland (North GRIP ice core) and Antarctica (Vostok and EPICA-Dome C ice cores) allowed the recognition of a fraction of magnetic minerals in ice whose concentration and magnetic properties are directly related to that of insoluble dust. The source of this fraction of magnetic minerals thus appears closely related to terrestrial dust transport and deposition and its magnetic properties are informative of the dust provenance areas. The rock-magnetic properties of the dust may reflect distinct changes of dust source areas from glacial to interglacial periods in agreement with and adding further information to the isotopic (87Sr/86Sr and 143Nd/144Nd) analyses. A second magnetic fraction consists of particles of nanometric size, which are superparamagnetic at freezer temperature and whose concentration is independent of the mass of aerosol dust found in the ice. The source of these nanometric-sized magnetic particles is ascribed to fallout of “meteoric smoke” and their concentration in ice was found to be compatible with the extraterrestrial fallout inferred from Ir concentrations. The diameter of the smoke particles as inferred from magnetic measurements is in the range of about 7–20 nm

    Script concordance test: an approach to the evaluation of clinical reasoning in uncertain contexts

    Get PDF
    Little research has been done in Brazilian medical education on the evaluation of clinical reasoning in situations of uncertainty. The most common tests are still multiple-choice, which are capable of evaluating skills when dealing with well-defined problems. However, in practice the majority of situations involve uncertainties. A method for the evaluation of clinical reasoning in contexts of uncertainty was developed on the basis of the cognitive script theory in relation to professional reasoning. The objectives of the research were to develop, apply, and analyze this methodology in a Brazilian educational setting, based on clinical situations in Geriatrics that involved diagnostic, therapeutic, or ethical dilemmas. A group of specialists in this area and a group of undergraduate students that were completing their training in the Geriatrics internship took the test. Comparison of the results led to evidence of the instrument's validity, capable of distinguishing clinical reasoning according to the participants' level of experience. The mean score for the specialists (80,41) was higher than that of students (70,71) (p < 0,001). In addition, analyses of the internal consistency and a G study design furnished results that are consistent with a scoring system that seeks to evaluate a professional skill. In conclusion, a proposal for a script concordance test in the Portuguese language, applied in a Brazilian teaching institution, may be a viable alternative for evaluating clinical reasoning in contexts of uncertainty.A avaliação do raciocínio clínico em situações de incerteza é pouco pesquisada na educação médica. Os testes escritos mais aplicados são de múltipla escolha, capazes de avaliar como se lida com problemas bem definidos. Porém, a maioria das situações contém incertezas. Um método de avaliação do raciocínio clínico em contextos de incerteza foi desenvolvido a partir da teoria de scripts, com situações em geriatria. Um grupo de especialistas e um grupo de estudantes de graduação resolveram o teste. Acomparação entre os resultados trouxe indícios da validade do instrumento, capaz de diferenciar o raciocínio relacionado ao nível de experiência profissional. A média dos escores dos especialistas (80,41) foi superior à dos estudantes (70,71), p < 0,001. As análises de consistência interna e um estudo G forneceram resultados que estão de acordo com metodologias que buscam avaliar uma competência profissional. Concluiu-se que uma proposta de teste de concordância de scripts em língua portuguesa aplicado em uma instituição de ensino brasileira pode ser uma alternativa para a avaliação do raciocínio clínico em contextos de incerteza.Universidade Federal de São Paulo (UNIFESP)UNIFESP, EPM, São Paulo, BrazilSciEL

    Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core

    Get PDF
    An important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice, δ18Oatm, total air content, CO2, CH4, N2O, dust, high-resolution chemistry, ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the "basal clean ice facies". Some of the data are consistent with a pristine paleoclimatic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water, nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides. This stress field change, combined with bottom-ice temperature close to the pressure melting point, induces accelerated migration recrystallization, which results in spatial chemical sorting of the impurities, depending on their state (dissolved vs. solid) and if they are involved or not in salt formation. This chemical sorting effect is responsible for the progressive build-up of the visible solid aggregates that therefore mainly originate "from within", and not from incorporation processes of debris from the ice sheet's substrate. We further discuss how the proposed mechanism is compatible with the other ice properties described. We conclude that the paleoclimatic signal is only marginally affected in terms of global ice properties at the bottom of EPICA Dome C, but that the timescale was considerably distorted by mechanical stretching of MIS20 due to the increasing influence of the subglacial topography, a process that might have started well above the bottom ice. A clear paleoclimatic signal can therefore not be inferred from the deeper part of the EPICA Dome C ice core. Our work suggests that the existence of a flat monotonic ice-bedrock interface, extending for several times the ice thickness, would be a crucial factor in choosing a future "oldest ice" drilling location in Antarctica

    Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core

    Get PDF
    International audienceAn important share of paleoclimatic information is buried within the lowermost layers of deep ice cores. Because improving our records further back in time is one of the main challenges in the near future, it is essential to judge how deep these records remain unaltered, since the proximity of the bedrock is likely to interfere both with the recorded temporal sequence and the ice properties. In this paper, we present a multiparametric study (δD-δ18Oice , δ18Oatm , total air content, CO2 , CH4 , N2O, dust, high-resolution chemistry , ice texture) of the bottom 60 m of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from central Antarctica. These bottom layers were subdivided into two distinct facies: the lower 12 m showing visible solid inclusions (basal dispersed ice facies) and the upper 48 m, which we will refer to as the " basal clean ice facies ". Some of the data are consistent with a pristine paleocli-matic signal, others show clear anomalies. It is demonstrated that neither large-scale bottom refreezing of subglacial water , nor mixing (be it internal or with a local basal end term from a previous/initial ice sheet configuration) can explain the observed bottom-ice properties. We focus on the high-resolution chemical profiles and on the available remote sensing data on the subglacial topography of the site to propose a mechanism by which relative stretching of the bottom-ice sheet layers is made possible, due to the progressively confining effect of subglacial valley sides

    Two-dimensional impurity imaging in deep Antarctic ice cores: snapshots of three climatic periods and implications for high-resolution signal interpretation

    Get PDF
    Due to its micrometer-scale resolution and inherently micro-destructive nature, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is particularly suited to exploring the thin and closely spaced layers in the oldest sections of polar ice cores. Recent adaptions to the LA-ICP-MS instrumentation mean we have faster washout times allowing state-of-the-art 2-D imaging of an ice core. This new method has great potential especially when applied to the localization of impurities on the ice sample, something that is crucial, to avoiding misinterpretation of the ultra-fine-resolution signals. Here we present the first results of the application of LA-ICP-MS elemental imaging to the analysis of selected glacial and interglacial samples from the Talos Dome and EPICA Dome C ice cores from central Antarctica. The localization of impurities from both marine and terrestrial sources is discussed, with special emphasis on observing a connection with the network of grain boundaries and differences between different climatic periods. Scale-dependent i mage analysis shows that the spatial significance of a single line profile along the main core axis increases systematically as the imprint of the grain boundaries weakens. It is demon-strated how instrumental settings can be adapted to suit the purpose of the analysis, i.e., by either employing LA-ICP-MS to study the interplay between impurities and the ice microstructure or to investigate the extremely thin climate proxy signals in deep polar ice
    corecore