2,807 research outputs found
Thermal Phase Variations of WASP-12b: Defying Predictions
[Abridged] We report Warm Spitzer full-orbit phase observations of WASP-12b
at 3.6 and 4.5 micron. We are able to measure the transit depths, eclipse
depths, thermal and ellipsoidal phase variations at both wavelengths. The large
amplitude phase variations, combined with the planet's previously-measured
day-side spectral energy distribution, is indicative of non-zero Bond albedo
and very poor day-night heat redistribution. The transit depths in the
mid-infrared indicate that the atmospheric opacity is greater at 3.6 than at
4.5 micron, in disagreement with model predictions, irrespective of C/O ratio.
The secondary eclipse depths are consistent with previous studies. We do not
detect ellipsoidal variations at 3.6 micron, but our parameter uncertainties
-estimated via prayer-bead Monte Carlo- keep this non-detection consistent with
model predictions. At 4.5 micron, on the other hand, we detect ellipsoidal
variations that are much stronger than predicted. If interpreted as a geometric
effect due to the planet's elongated shape, these variations imply a 3:2 ratio
for the planet's longest:shortest axes and a relatively bright day-night
terminator. If we instead presume that the 4.5 micron ellipsoidal variations
are due to uncorrected systematic noise and we fix the amplitude of the
variations to zero, the best fit 4.5 micron transit depth becomes commensurate
with the 3.6 micron depth, within the uncertainties. The relative transit
depths are then consistent with a Solar composition and short scale height at
the terminator. Assuming zero ellipsoidal variations also yields a much deeper
4.5 micron eclipse depth, consistent with a Solar composition and modest
temperature inversion. We suggest future observations that could distinguish
between these two scenarios.Comment: 19 pages, 10 figures, ApJ in press. Improved discussion of gravity
brightenin
Spitzer/MIPS 24 μm Observations of HD 209458b: Three Eclipses, Two and a Half Transits, and a Phase Curve Corrupted by Instrumental Sensitivity Variations
We report the results of an analysis of all Spitzer/MIPS 24 μm observations of HD 209458b, one of the touchstone objects in the study of irradiated giant planet atmospheres. Altogether, we analyze two and a half transits, three eclipses, and a 58 hr near-continuous observation designed to detect the planet's thermal phase curve. The results of our analysis are: (1) a mean transit depth of 1.484% ± 0.033%, consistent with previous measurements and showing no evidence of variability in transit depth at the 3% level. (2) A mean eclipse depth of 0.338% ± 0.026%, somewhat higher than that previously reported for this system; this new value brings observations into better agreement with models. From this eclipse depth we estimate an average dayside brightness temperature of 1320 ± 80 K; the dayside flux shows no evidence of variability at the 12% level. (3) Eclipses in the system occur 32 ± 129 s earlier than would be expected from a circular orbit, which constrains the orbital quantity ecos ω to be 0.00004 ± 0.00033. This result is fully consistent with a circular orbit and sets an upper limit of 140 m s^(–1) (3σ) on any eccentricity-induced velocity offset during transit. The phase curve observations (including one of the transits) exhibit an anomalous trend similar to the detector ramp seen in previous Spitzer/IRAC observations; by modeling this ramp we recover the system parameters for this transit. The long-duration photometry which follows the ramp and transit exhibits a gradual ~0.2% decrease in flux over ~30 hr. This effect is similar to that seen in pre-launch calibration data taken with the 24 μm array and is better fit by an instrumental model than a model invoking planetary emission. The large uncertainties associated with this poorly understood, likely instrumental effect prevent us from usefully constraining the planet's thermal phase curve. Our observations highlight the need for a thorough understanding of detector-related instrumental effects on long timescales when making the high-precision mid-infrared measurements planned for future missions such as EChO, SPICA, and the James Webb Space Telescope
Recommended from our members
School Segregation, Educational Attainment, and Crime: Evidence from the End of Busing in Charlotte-Mecklenburg
We study the impact of the end of race-based busing in Charlotte-Mecklenburg schools (“CMS”) on academic achievement, educational attainment, and young adult crime. In 2001, CMS was prohibited from using race in assigning students to schools. School boundaries were redrawn dramatically to reflect the surrounding neighborhoods, and half of its students received a new assignment. Using addresses measured prior to the policy change, we compare students in the same neighborhood that lived on opposite sides of a newly drawn boundary. We find that both white and minority students score lower on high school exams when they are assigned to schools with more minority students. We also find decreases in high school graduation and four-year college attendance for whites, and large increases in crime for minority males. The impacts on achievement and attainment are smaller in younger cohorts, while the impact on crime remains large and persistent for at least nine years after the re-zoning. We show that compensatory resource allocation policies in CMS likely played an important role in mitigating the impact of segregation on achievement and attainment, but had no impact on crime. We conclude that the end of busing widened racial inequality, despite efforts by CMS to mitigate the impact of increases in segregation
Transits and secondary eclipses of HD 189733 with Spitzer
We present limits on transit timing variations and secondary eclipse depth
variations at 8 microns with the Spitzer Space Telescope IRAC camera. Due to
the weak limb darkening in the infrared and uninterrupted observing, Spitzer
provides the highest accuracy transit times for this bright system, in
principle providing sensitivity to secondary planets of Mars mass in resonant
orbits. Finally, the transit data provides tighter constraints on the
wavelength- dependent atmospheric absorption by the planet.Comment: 7 pages, 7 figures, submitted to proceedings of IAU Symposium No. 253
"Transiting Planets
Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436b
We present Spitzer Space Telescope infrared photometry of a primary transit
of the hot Neptune GJ 436b. The observations were obtained using the 8 microns
band of the InfraRed Array Camera (IRAC). The high accuracy of the transit data
and the weak limb-darkening in the 8 microns IRAC band allow us to derive
(assuming M = 0.44 +- 0.04 Msun for the primary) a precise value for the
planetary radius (4.19 +0.21-0.16 Rearth), the stellar radius (0.463
+0.022-0.017 Rsun), the orbital inclination (85.90 +0.19-0.18 degrees) and
transit timing (2454280.78186 +0.00015-0.00008 HJD). Assuming current planet
models, an internal structure similar to that of Neptune with a small H/He
envelope is necessary to account for the measured radius of GJ 436b.Comment: Accepted for publication in A&A on 21/07/2007; 5 pages, 3 figure
Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b
The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot
Neptune'--reveals itself by the dimming of light as it crosses in front of and
behind its parent star as seen from Earth. Respectively known as the primary
transit and secondary eclipse, the former constrains the planet's radius and
mass, and the latter constrains the planet's temperature and, with measurements
at multiple wavelengths, its atmospheric composition. Previous work using
transmission spectroscopy failed to detect the 1.4-\mu m water vapour band,
leaving the planet's atmospheric composition poorly constrained. Here we report
the detection of planetary thermal emission from the dayside of GJ 436b at
multiple infrared wavelengths during the secondary eclipse. The best-fit
compositional models contain a high CO abundance and a substantial methane
(CH4) deficiency relative to thermochemical equilibrium models for the
predicted hydrogen-dominated atmosphere. Moreover, we report the presence of
some H2O and traces of CO2. Because CH4 is expected to be the dominant
carbon-bearing species, disequilibrium processes such as vertical mixing and
polymerization of methane into substances such as ethylene may be required to
explain the hot Neptune's small CH4-to-CO ratio, which is at least 10^5 times
smaller than predicted
The Spitzer search for the transits of HARPS low-mass planets - II. Null results for 19 planets
Short-period super-Earths and Neptunes are now known to be very frequent
around solar-type stars. Improving our understanding of these mysterious
planets requires the detection of a significant sample of objects suitable for
detailed characterization. Searching for the transits of the low-mass planets
detected by Doppler surveys is a straightforward way to achieve this goal.
Indeed, Doppler surveys target the most nearby main-sequence stars, they
regularly detect close-in low-mass planets with significant transit
probability, and their radial velocity data constrain strongly the ephemeris of
possible transits. In this context, we initiated in 2010 an ambitious Spitzer
multi-Cycle transit search project that targeted 25 low-mass planets detected
by radial velocity, focusing mainly on the shortest-period planets detected by
the HARPS spectrograph. We report here null results for 19 targets of the
project. For 16 planets out of 19, a transiting configuration is strongly
disfavored or firmly rejected by our data for most planetary compositions. We
derive a posterior probability of 83% that none of the probed 19 planets
transits (for a prior probability of 22%), which still leaves a significant
probability of 17% that at least one of them does transit. Globally, our
Spitzer project revealed or confirmed transits for three of its 25 targeted
planets, and discarded or disfavored the transiting nature of 20 of them. Our
light curves demonstrate for Warm Spitzer excellent photometric precisions: for
14 targets out of 19, we were able to reach standard deviations that were
better than 50ppm per 30 min intervals. Combined with its Earth-trailing orbit,
which makes it capable of pointing any star in the sky and to monitor it
continuously for days, this work confirms Spitzer as an optimal instrument to
detect sub-mmag-deep transits on the bright nearby stars targeted by Doppler
surveys.Comment: Accepted for publication in Astronomy and Astrophysics. 23 pages, 21
figure
The phase-dependent Infrared brightness of the extrasolar planet upsilon Andromedae b
The star upsilon Andromeda is orbited by three known planets, the innermost
of which has an orbital period of 4.617 days and a mass at least 0.69 that of
Jupiter. This planet is close enough to its host star that the radiation it
absorbs overwhelms its internal heat losses. Here we present the 24 micron
light curve of this system, obtained with the Spitzer Space Telescope. It shows
a clear variation in phase with the orbital motion of the innermost planet.
This is the first demonstration that such planets possess distinct hot
substellar (day) and cold antistellar (night) faces.Comment: "Director's cut" of paper to appear in Science, 27 October, 200
Spitzer IRAC Secondary Eclipse Photometry of the Transiting Extrasolar Planet HAT-P-1b
We report Spitzer/IRAC photometry of the transiting giant exoplanet HAT-P-1b
during its secondary eclipse. This planet lies near the postulated boundary
between the pM and pL-class of hot Jupiters, and is important as a test of
models for temperature inversions in hot Jupiter atmospheres. We derive eclipse
depths for HAT-P-1b, in units of the stellar flux, that are: 0.080% +/-
0.008%,[3.6um], 0.135% +/- 0.022%,[4.5um],0.203% +/- 0.031%,[5.8um], and
$0.238% +/- 0.040%,[8.0um]. These values are best fit using an atmosphere with
a modest temperature inversion, intermediate between the archetype inverted
atmosphere (HD209458b) and a model without an inversion. The observations also
suggest that this planet is radiating a large fraction of the available stellar
irradiance on its dayside, with little available for redistribution by
circulation. This planet has sometimes been speculated to be inflated by tidal
dissipation, based on its large radius in discovery observations, and on a
non-zero orbital eccentricity allowed by the radial velocity data. The timing
of the secondary eclipse is very sensitive to orbital eccentricity, and we find
that the central phase of the eclipse is 0.4999 +/- 0.0005. The difference
between the expected and observed phase indicates that the orbit is close to
circular, with a 3-sigma limit of |e cosw| < 0.002.Comment: 5 pages, 6 figures, 1 table. Accepted by The Astrophysical Journal,
10 Nov 200
- …
