3,739 research outputs found
A generalized Fellner-Schall method for smoothing parameter estimation with application to Tweedie location, scale and shape models
We consider the estimation of smoothing parameters and variance components in
models with a regular log likelihood subject to quadratic penalization of the
model coefficients, via a generalization of the method of Fellner (1986) and
Schall (1991). In particular: (i) we generalize the original method to the case
of penalties that are linear in several smoothing parameters, thereby covering
the important cases of tensor product and adaptive smoothers; (ii) we show why
the method's steps increase the restricted marginal likelihood of the model,
that it tends to converge faster than the EM algorithm, or obvious
accelerations of this, and investigate its relation to Newton optimization;
(iii) we generalize the method to any Fisher regular likelihood. The method
represents a considerable simplification over existing methods of estimating
smoothing parameters in the context of regular likelihoods, without sacrificing
generality: for example, it is only necessary to compute with the same first
and second derivatives of the log-likelihood required for coefficient
estimation, and not with the third or fourth order derivatives required by
alternative approaches. Examples are provided which would have been impossible
or impractical with pre-existing Fellner-Schall methods, along with an example
of a Tweedie location, scale and shape model which would be a challenge for
alternative methods
Some Aspects of Measurement Error in Linear Regression of Astronomical Data
I describe a Bayesian method to account for measurement errors in linear
regression of astronomical data. The method allows for heteroscedastic and
possibly correlated measurement errors, and intrinsic scatter in the regression
relationship. The method is based on deriving a likelihood function for the
measured data, and I focus on the case when the intrinsic distribution of the
independent variables can be approximated using a mixture of Gaussians. I
generalize the method to incorporate multiple independent variables,
non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler
is described for simulating random draws from the probability distribution of
the parameters, given the observed data. I use simulation to compare the method
with other common estimators. The simulations illustrate that the Gaussian
mixture model outperforms other common estimators and can effectively give
constraints on the regression parameters, even when the measurement errors
dominate the observed scatter, source detection fraction is low, or the
intrinsic distribution of the independent variables is not a mixture of
Gaussians. I conclude by using this method to fit the X-ray spectral slope as a
function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I
confirm the correlation seen by other authors between the radio-quiet quasar
X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope
softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines
(linmix_err.pro) for performing the Markov Chain Monte Carlo are available at
the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm
Electrostatic Field Classifier for Deficient Data
This paper investigates the suitability of recently developed models based on the physical
field phenomena for classification problems with incomplete datasets. An original approach
to exploiting incomplete training data with missing features and labels, involving extensive use
of electrostatic charge analogy, has been proposed. Classification of incomplete patterns has been
investigated using a local dimensionality reduction technique, which aims at exploiting all available
information rather than trying to estimate the missing values. The performance of all proposed
methods has been tested on a number of benchmark datasets for a wide range of missing data scenarios
and compared to the performance of some standard techniques. Several modifications of the
original electrostatic field classifier aiming at improving speed and robustness in higher dimensional
spaces are also discussed
Application of Monte Carlo Algorithms to the Bayesian Analysis of the Cosmic Microwave Background
Power spectrum estimation and evaluation of associated errors in the presence
of incomplete sky coverage; non-homogeneous, correlated instrumental noise; and
foreground emission is a problem of central importance for the extraction of
cosmological information from the cosmic microwave background. We develop a
Monte Carlo approach for the maximum likelihood estimation of the power
spectrum. The method is based on an identity for the Bayesian posterior as a
marginalization over unknowns. Maximization of the posterior involves the
computation of expectation values as a sample average from maps of the cosmic
microwave background and foregrounds given some current estimate of the power
spectrum or cosmological model, and some assumed statistical characterization
of the foregrounds. Maps of the CMB are sampled by a linear transform of a
Gaussian white noise process, implemented numerically with conjugate gradient
descent. For time series data with N_{t} samples, and N pixels on the sphere,
the method has a computational expense $KO[N^{2} +- N_{t} +AFw-log N_{t}],
where K is a prefactor determined by the convergence rate of conjugate gradient
descent. Preconditioners for conjugate gradient descent are given for scans
close to great circle paths, and the method allows partial sky coverage for
these cases by numerically marginalizing over the unobserved, or removed,
region.Comment: submitted to Ap
Proximal humeral fractures with a severe varus deformity treated by fixation with a locking plate
A Meaner King uses Biased Bases
The mean king problem is a quantum mechanical retrodiction problem, in which
Alice has to name the outcome of an ideal measurement on a d-dimensional
quantum system, made in one of (d+1) orthonormal bases, unknown to Alice at the
time of the measurement. Alice has to make this retrodiction on the basis of
the classical outcomes of a suitable control measurement including an entangled
copy. We show that the existence of a strategy for Alice is equivalent to the
existence of an overall joint probability distribution for (d+1) random
variables, whose marginal pair distributions are fixed as the transition
probability matrices of the given bases. In particular, for d=2 the problem is
decided by John Bell's classic inequality for three dichotomic variables. For
mutually unbiased bases in any dimension Alice has a strategy, but for randomly
chosen bases the probability for that goes rapidly to zero with increasing d.Comment: 5 pages, 1 figur
Variational approximation for mixtures of linear mixed models
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped
data and can be estimated by likelihood maximization through the EM algorithm.
The conventional approach to determining a suitable number of components is to
compare different mixture models using penalized log-likelihood criteria such
as BIC.We propose fitting MLMMs with variational methods which can perform
parameter estimation and model selection simultaneously. A variational
approximation is described where the variational lower bound and parameter
updates are in closed form, allowing fast evaluation. A new variational greedy
algorithm is developed for model selection and learning of the mixture
components. This approach allows an automatic initialization of the algorithm
and returns a plausible number of mixture components automatically. In cases of
weak identifiability of certain model parameters, we use hierarchical centering
to reparametrize the model and show empirically that there is a gain in
efficiency by variational algorithms similar to that in MCMC algorithms.
Related to this, we prove that the approximate rate of convergence of
variational algorithms by Gaussian approximation is equal to that of the
corresponding Gibbs sampler which suggests that reparametrizations can lead to
improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG
Issues in modern bone histomorphometry
This review reports on proceedings of a bone histomorphometry session conducted at the Fortieth International IBMS Sun Valley Skeletal Tissue Biology Workshop held on August 1, 2010. The session was prompted by recent technical problems encountered in conducting histomorphometry on bone biopsies from humans and animals treated with anti-remodeling agents such as bisphosphonates and RANKL antibodies. These agents reduce remodeling substantially, and thus cause problems in calculating bone remodeling dynamics using in vivo fluorochrome labeling. The tissue specimens often contain few or no fluorochrome labels, and thus create statistical and other problems in analyzing variables such as mineral apposition rates, mineralizing surface and bone formation rates. The conference attendees discussed these problems and their resolutions, and the proceedings reported here summarize their discussions and recommendations
A quantum framework for likelihood ratios
The ability to calculate precise likelihood ratios is fundamental to many STEM areas, such as decision-making theory, biomedical science, and engineering. However, there is no assumption-free statistical methodology to achieve this. For instance, in the absence of data relating to covariate overlap, the widely used Bayes’ theorem either defaults to the marginal probability driven “naive Bayes’ classifier”, or requires the use of compensatory expectation-maximization techniques. Equally, the use of alternative statistical approaches, such as multivariate logistic regression, may be confounded by other axiomatic conditions, e.g., low levels of co-linearity. This article takes an information-theoretic approach in developing a new statistical formula for the calculation of likelihood ratios based on the principles of quantum entanglement. In doing so, it is argued that this quantum approach demonstrates: that the likelihood ratio is a real quality of statistical systems; that the naive Bayes’ classifier is a special case of a more general quantum mechanical expression; and that only a quantum mechanical approach can overcome the axiomatic limitations of classical statistics
Identifying dynamical systems with bifurcations from noisy partial observation
Dynamical systems are used to model a variety of phenomena in which the
bifurcation structure is a fundamental characteristic. Here we propose a
statistical machine-learning approach to derive lowdimensional models that
automatically integrate information in noisy time-series data from partial
observations. The method is tested using artificial data generated from two
cell-cycle control system models that exhibit different bifurcations, and the
learned systems are shown to robustly inherit the bifurcation structure.Comment: 16 pages, 6 figure
- …
