13 research outputs found
Who benefits from environmental policy? An environmental justice analysis of air quality change in Britain, 2001-2011
Air quality in Great Britain has improved in recent years, but not enough to prevent the European Commission (EC) taking legal action for non-compliance with limit values. Air quality is a national public health concern, with disease burden associated with current air quality estimated at 29 000 premature deaths per year due to fine particulates, with a further burden due to NO2. National small-area analyses showed that in 2001 poor air quality was much more prevalent in socioeconomically deprived areas. We extend this social distribution of air quality analysis to consider how the distribution changed over the following decade (2001-2011), a period when significant efforts to meet EC air quality directive limits have been made, and air quality has improved. We find air quality improvement is greatest in the least deprived areas, whilst the most deprived areas bear a disproportionate and rising share of declining air quality including non-compliance with air quality standards. We discuss the implications for health inequalities, progress towards environmental justice, and compatibility of social justice and environmental sustainability objectives
How Do Ozone Levels Influence the Timing of Residential Moves?
Although there is evidence that people are aware of local ozone levels and may adjust their day-to-day routines when ozone levels change, little is known about the relationship between local ozone levels and the timing of residential moves. Results from a discrete-time hazard model suggest that homeowners living in areas with moderate to poor air quality are more likely to move when ozone levels are substantially different (better or worse) from the levels at the time of purchase.
Managing Carbon
Storing carbon (C) and offsetting carbon dioxide (CO2) emissions with the use of wood for energy, both of which slow emissions of CO2 into the atmosphere, present significant challenges for forest management (IPCC 2001). In the United States, there has been a net increase in C in forests and in harvested wood products stocks (Tables 7.1 and 7.2), a result of historical and recent ecological conditions, management practices, and use of forest products (Birdsey et al. 2006). However, recent projections for the forest sector suggest that annual C storage could begin to decline, and U.S. forests could become a net C emitter of tens to hundreds of Tg C year ¹ within a few decades (USDA FS 2012a). It is therefore urgent to identify effective C management strategies, given the complexity of factors that drive the forest C cycle and the multiple objectives for which forests are managed. An ideal C management activity contributes benefits beyond increasing C storage by achieving other management objectives and providing ecosystem services in a sustainable manner. Strategies for effectively managing forest C stocks and offsetting C emissions requires a thorough understanding of biophysical and social influences on the forest C cycle (Birdsey et al. 1993). Successful policies and incentives may be chosen to support strategies if sufficient knowledge of social processes (e.g., landowner or wood-user response to incentives and markets) is available. For example, if C stocks are expected to decrease owing to decreasing forest land area caused by exurban development, policies or incentives to avoid deforestation in those areas may be effective. If C stocks are expected to decrease owing to the effects of a warmer climate, reducing stand densities may retain C over the long term by increasing resilience to drought and other stressors and by reducing crown fire hazard (Jackson et al. 2005; Reinhardt et al. 2008). Protecting old forests and other forests that have high C stocks may be more effective than seeking C offsets associated with wood use, especially if those forests would recover C more slowly in an altered climate. If climate change increases productivity in a given area over a long period of time, increasing forest C stocks through intensive management and forest products, including biomass energy, may be especially effective. It is equally important to know which strategies might make some management practices unacceptable (e.g., reducing biodiversity). However, no standard evaluation framework exists to aid decision making on alternative management strategies for maximizing C storage while minimizing risks and tradeoffs. Here we discuss (1) where forest C is stored in the United States, (2) how to measure forest C through space and time, (3) effectiveness of various management strategies in reducing atmospheric greenhouse gases (GHG), and (4) effectiveness of incentives, regulations, and institutional arrangements for implementing C management. Understanding of biophysical and social influences on the forest C cycle (Birdsey et al. 1993). Successful policies and incentives may be chosen to support strategies if sufficient knowledge of social processes (e.g., landowner or wood-user response to incentives and markets) is available. For example, if C stocks are expected to decrease owing to decreasing forest land area caused by exurban development, policies or incentives to avoid deforestation in those areas may be effective. If C stocks are expected to decrease owing to the effects of a warmer climate, reducing stand densities may retain C over the long term by increasing resilience to drought and other stressors and by reducing crown fire hazard (Jackson et al. 2005; Reinhardt et al. 2008). Protecting old forests and other forests that have high C stocks may be more effective than seeking C offsets associated with wood use, especially if those forests would recover C more slowly in an altered climate. If climate change increases productivity in a given area over a long period of time, increasing forest C stocks through intensive management and forest products, including biomass energy, may be especially effective. It is equally important to know which strategies might make some management practices unacceptable (e.g., reducing biodiversity). However, no standard evaluation framework exists to aid decision making on alternative management strategies for maximizing C storage while minimizing risks and tradeoffs. Here we discuss (1) where forest C is stored in the United States, (2) how to measure forest C through space and time, (3) effectiveness of various management strategies in reducing atmospheric greenhouse gases (GHG), and (4) effectiveness of incentives, regulations, and institutional arrangements for implementing C management
Carbon storage potential of harvested wood: summary and policy implications
Carbon sequestration, Greenhouse gas emissions, Harvested wood products, Offsets, Life-cycle assessment,
