2,018 research outputs found
Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators
The CHErenkov / Scintillation Separation experiment (CHESS) has been used to
demonstrate the separation of Cherenkov and scintillation light in both linear
alkylbenzene (LAB) and LAB with 2g/L of PPO as a fluor (LAB/PPO). This is the
first such demonstration for the more challenging LAB/PPO cocktail and improves
on previous results for LAB. A time resolution of 338 +/- 12 ps FWHM results in
an efficiency for identifying Cherenkov photons in LAB/PPO of 70 +/- 3% and 63
+/- 8% for time- and charge-based separation, respectively, with scintillation
contamination of 36 +/- 5% and 38 +/- 4%. LAB/PPO data is consistent with a
rise time of 0.75 +/- 0.25 ns
Effects of electron-phonon interactions on the electron tunneling spectrum of PbS quantum dots
We present a tunnel spectroscopy study of single PbS Quantum Dots (QDs) as
function of temperature and gate voltage. Three distinct signatures of strong
electron-phonon coupling are observed in the Electron Tunneling Spectrum (ETS)
of these QDs. In the shell-filling regime, the degeneracy of the
electronic levels is lifted by the Coulomb interactions and allows the
observation of phonon sub-bands that result from the emission of optical
phonons. At low bias, a gap is observed in the ETS that cannot be closed with
the gate voltage, which is a distinguishing feature of the Franck-Condon (FC)
blockade. From the data, a Huang-Rhys factor in the range is
obtained. Finally, in the shell tunneling regime, the optical phonons appear in
the inelastic ETS .Comment: 5 pages, 5 figure
Is there something of the MCT in orientationally disordered crystals ?
Molecular Dynamics simulations have been performed on the orientationally
disordered crystal chloroadamantane: a model system where dynamics are almost
completely controlled by rotations. A critical temperature T_c = 225 K as
predicted by the Mode Coupling Theory can be clearly determined both in the
alpha and beta dynamical regimes. This investigation also shows the existence
of a second remarkable dynamical crossover at the temperature T_x > T_c
consistent with a previous NMR and MD study [1]. This allows us to confirm
clearly the existence of a 'landscape-influenced' regime occurring in the
temperature range [T_c-T_x] as recently proposed [2,3].Comment: 4 pages, 5 figures, REVTEX
Near infrared few-cycle pulses for high harmonic generation
We report on the development of tunable few-cycle pulses with central
wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of
principle for high harmonic generation in atomic and molecular targets. In
order to generate such pulses we produced a filament in a 4 bar krypton cell.
Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse
was achieved. The spectrally broadened output pulses were then compressed by
fused silica plates down to the few-cycle regime close to the Fourier limit.
The auto-correlation of these pulses revealed durations of about 3 cycles for
all investigated central wavelengths. Pulses with a central wavelength of 1.7
um and up to 430 uJ energy per pulse were employed to generate high order
harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the
possibility to operate deeply in the non-perturbative regime with a Keldysh
parameter smaller than 1. Hence, this source is suitable for the study of the
non-adiabatic tunneling regime in most generating systems used for high order
harmonic generation and attoscience.Comment: 12 pages, 4 figure
Triplicity and Physical Characteristics of Asteroid (216) Kleopatra
To take full advantage of the September 2008 opposition passage of the M-type
asteroid (216) Kleopatra, we have used near-infrared adaptive optics (AO)
imaging with the W.M. Keck II telescope to capture unprecedented high
resolution images of this unusual asteroid. Our AO observations with the W.M.
Keck II telescope, combined with Spitzer/IRS spectroscopic observations and
past stellar occultations, confirm the value of its IRAS radiometric radius of
67.5 km as well as its dog-bone shape suggested by earlier radar observations.
Our Keck AO observations revealed the presence of two small satellites in orbit
about Kleopatra (see Marchis et al., 2008). Accurate measurements of the
satellite orbits over a full month enabled us to determine the total mass of
the system to be 4.64+/-0.02 10^18 Kg. This translates into a bulk density of
3.6 +/-0.4 g/cm3, which implies a macroscopic porosity for Kleopatra of ~
30-50%, typical of a rubble-pile asteroid. From these physical characteristics
we measured its specific angular momentum, very close to that of a spinning
equilibrium dumbbell.Comment: 35 pages, 3 Tables, 9 Figures. In press to Icaru
A low density of 0.8 g/cc for the Trojan binary asteroid 617 Patroclus
The Trojan population consists of two swarms of asteroids following the same
orbit as Jupiter and located at the L4 and L5 Lagrange points of the
Jupiter-Sun system (leading and following Jupiter by 60 degrees). The asteroid
617 Patroclus is the only known binary Trojan (Merline et al. 2001). The orbit
of this double system was hitherto unknown. Here we report that the components,
separated by 680 km, move around the system centre of mass, describing roughly
a circular orbit. Using the orbital parameters, combined with thermal
measurements to estimate the size of the components, we derive a very low
density of 0.8 g/cc. The components of Patroclus are therefore very porous or
composed mostly of water ice, suggesting that they could have been formed in
the outer part of the solar system.Comment: 10 pages, 3 figures, 1 tabl
Physical and dynamical properties of the main belt triple asteroid (87) Sylvia
We present the analysis of high angular resolution observations of the triple
Asteroid (87) Sylvia collected with three 8-10 m class telescopes (Keck, VLT,
Gemini North) and the Hubble Space Telescope. The moons' mutual orbits were
derived individually using a purely Keplerian model. We computed the position
of Romulus, the outer moon of the system, at the epoch of a recent stellar
occultation which was successfully observed at less than 15 km from our
predicted position, within the uncertainty of our model. The occultation data
revealed that the Moon, with a surface-area equivalent diameter
Ds=23.10.7km, is strongly elongated (axes ratio of
2.70.32.70.3), significantly more than single asteroids of similar
size in the main-belt. We concluded that its shape is probably affected by the
tides from the primary. A new shape model of the primary was calculated
combining adaptive-optics observations with this occultation and 40 archived
light-curves recorded since 1978. The difference between the
J2=0.024-0.009+0.016 derived from the 3-D shape model assuming an homogeneous
distribution of mass for the volume equivalent diameter Dv=27310km primary
and the null J2 implied by the Keplerian orbits suggests a non-homogeneous mass
distribution in the asteroid's interior
Integrating evolution into ecological modelling: accommodating phenotypic changes in agent based models.
PMCID: PMC3733718This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Evolutionary change is a characteristic of living organisms and forms one of the ways in which species adapt to changed conditions. However, most ecological models do not incorporate this ubiquitous phenomenon. We have developed a model that takes a 'phenotypic gambit' approach and focuses on changes in the frequency of phenotypes (which differ in timing of breeding and fecundity) within a population, using, as an example, seasonal breeding. Fitness per phenotype calculated as the individual's contribution to population growth on an annual basis coincide with the population dynamics per phenotype. Simplified model variants were explored to examine whether the complexity included in the model is justified. Outputs from the spatially implicit model underestimated the number of individuals across all phenotypes. When no phenotype transitions are included (i.e. offspring always inherit their parent's phenotype) numbers of all individuals are always underestimated. We conclude that by using a phenotypic gambit approach evolutionary dynamics can be incorporated into individual based models, and that all that is required is an understanding of the probability of offspring inheriting the parental phenotype
- …
