328 research outputs found

    The classical origin of quantum affine algebra in squashed sigma models

    Get PDF
    We consider a quantum affine algebra realized in two-dimensional non-linear sigma models with target space three-dimensional squashed sphere. Its affine generators are explicitly constructed and the Poisson brackets are computed. The defining relations of quantum affine algebra in the sense of the Drinfeld first realization are satisfied at classical level. The relation to the Drinfeld second realization is also discussed including higher conserved charges. Finally we comment on a semiclassical limit of quantum affine algebra at quantum level.Comment: 25 pages, 2 figure

    Analysis of pore-fluid pressure gradient and effective vertical-stress gradient distribution in layered hydrodynamic systems

    Get PDF
    A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study

    Microscopic Realization of the Kerr/CFT Correspondence

    Get PDF
    Supersymmetric M/string compactifications to five dimensions contain BPS black string solutions with magnetic graviphoton charge P and near-horizon geometries which are quotients of AdS_3 x S^2. The holographic duals are typically known 2D CFTs with central charges c_L=c_R=6P^3 for large P. These same 5D compactifications also contain non-BPS but extreme Kerr-Newman black hole solutions with SU(2)_L spin J_L and electric graviphoton charge Q obeying Q^3 \leq J_L^2. It is shown that in the maximally charged limit Q^3 -> J_L^2, the near-horizon geometry coincides precisely with the right-moving temperature T_R=0 limit of the black string with magnetic charge P=J_L^{1/3}. The known dual of the latter is identified as the c_L=c_R=6J_L CFT predicted by the Kerr/CFT correspondence. Moreover, at linear order away from maximality, one finds a T_R \neq 0 quotient of the AdS_3 factor of the black string solution and the associated thermal CFT entropy reproduces the linearly sub-maximal Kerr-Newman entropy. Beyond linear order, for general Q^3<J_L^2, one has a finite-temperature quotient of a warped deformation of the magnetic string geometry. The corresponding dual deformation of the magnetic string CFT potentially supplies, for the general case, the c_L=c_R=6J_L CFT predicted by Kerr/CFT.Comment: 18 pages, no figure

    Non-relativistic metrics from back-reacting fermions

    Full text link
    It has recently been pointed out that under certain circumstances the back-reaction of charged, massive Dirac fermions causes important modifications to AdS_2 spacetimes arising as the near horizon geometry of extremal black holes. In a WKB approximation, the modified geometry becomes a non-relativistic Lifshitz spacetime. In three dimensions, it is known that integrating out charged, massive fermions gives rise to gravitational and Maxwell Chern-Simons terms. We show that Schrodinger (warped AdS_3) spacetimes exist as solutions to a gravitational and Maxwell Chern-Simons theory with a cosmological constant. Motivated by this, we look for warped AdS_3 or Schrodinger metrics as exact solutions to a fully back-reacted theory containing Dirac fermions in three and four dimensions. We work out the dynamical exponent in terms of the fermion mass and generalize this result to arbitrary dimensions.Comment: 26 pages, v2: typos corrected, references added, minor change

    String Theory on Warped AdS_3 and Virasoro Resonances

    Get PDF
    We investigate aspects of holographic duals to time-like warped AdS_3 space-times--which include G\"odel's universe--in string theory. Using worldsheet techniques similar to those that have been applied to AdS_3 backgrounds, we are able to identify space-time symmetry algebras that act on the dual boundary theory. In particular, we always find at least one Virasoro algebra with computable central charge. Interestingly, there exists a dense set of points in the moduli space of these models in which there is actually a second commuting Virasoro algebra, typically with different central charge than the first. We analyze the supersymmetry of the backgrounds, finding related enhancements, and comment on possible interpretations of these results. We also perform an asymptotic symmetry analysis at the level of supergravity, providing additional support for the worldsheet analysis.Comment: 24 pages + appendice

    Holography For a De Sitter-Esque Geometry

    Full text link
    Warped dS3_3 arises as a solution to topologically massive gravity (TMG) with positive cosmological constant +1/2+1/\ell^2 and Chern-Simons coefficient 1/μ1/\mu in the region μ22<27\mu^2 \ell^2 < 27. It is given by a real line fibration over two-dimensional de Sitter space and is equivalent to the rotating Nariai geometry at fixed polar angle. We study the thermodynamic and asymptotic structure of a family of geometries with warped dS3_3 asymptotics. Interestingly, these solutions have both a cosmological horizon and an internal one, and their entropy is unbounded from above unlike black holes in regular de Sitter space. The asymptotic symmetry group resides at future infinity and is given by a semi-direct product of a Virasoro algebra and a current algebra. The right moving central charge vanishes when μ22=27/5\mu^2 \ell^2 = 27/5. We discuss the possible holographic interpretation of these de Sitter-esque spacetimes.Comment: 22 pages, 1 figure; v2: typos corrected, to match with published versio

    Classical Integrability of the Squashed Three-sphere, Warped AdS3 and Schroedinger Spacetime via T-Duality

    Full text link
    We discuss the integrability of 2d non-linear sigma models with target space being the squashed three-sphere, warped anti-de Sitter space and the Schroedinger spacetime. These models can be obtained via T-duality from integrable models. We construct an infinite family of non-local conserved charges from the T-dual Lax currents, enhancing the symmetry of warped anti-de Sitter space and the Schroedinger spacetime to sl2(R)+sl2(R).Comment: 29 Pages, 3 appendices. Minor changes: added references, footnot
    corecore