4,893 research outputs found

    Quasiadiabatic dynamics of ultracold bosonic atoms in a one-dimensional optical superlattice

    Get PDF
    We study the quasiadiabatic dynamics of a one-dimensional system of ultracold bosonic atoms loaded in an optical superlattice. Focusing on a slow linear variation in time of the superlattice potential, the system is driven from a conventional Mott insulator phase to a superlattice-induced Mott insulator, crossing in between a gapless critical superfluid region. Due to the presence of a gapless region, a number of defects depending on the velocity of the quench appear. Our findings suggest a power-law dependence similar to the Kibble-Zurek mechanism for intermediate values of the quench rate. For the temporal ranges of the quench dynamics that we considered, the scaling of defects depends nontrivially on the width of the superfluid region.Comment: 6 Pages, 4 Figure

    Eulerian Walkers as a model of Self-Organised Criticality

    Get PDF
    We propose a new model of self-organized criticality. A particle is dropped at random on a lattice and moves along directions specified by arrows at each site. As it moves, it changes the direction of the arrows according to fixed rules. On closed graphs these walks generate Euler circuits. On open graphs, the particle eventually leaves the system, and a new particle is then added. The operators corresponding to particle addition generate an abelian group, same as the group for the Abelian Sandpile model on the graph. We determine the critical steady state and some critical exponents exactly, using this equivalence.Comment: 4 pages, RevTex, 4 figure

    Nonequilibrium Phase Transitions in a Driven Sandpile Model

    Get PDF
    We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope \sigma_c\/, a parameter \alpha\/, governing the local current-slope relation (beyond threshold), and jinj_{\rm in}, the mean input current of sand. A nonequilibrium phase diagram is obtained in the \alpha\, -\, j_{\rm in}\/ plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.Comment: 11 pages, RevTeX (preprint format), 4 figures available upon requs

    Bloch Walls and Macroscopic String States in Bethe's solution of the Heisenberg Ferromagnetic Linear Chain

    Get PDF
    We present a calculation of the lowest excited states of the Heisenberg ferromagnet in 1-d for any wave vector. These turn out to be string solutions of Bethe's equations with a macroscopic number of particles in them. These are identified as generalized quantum Bloch wall states, and a simple physical picture provided for the same.Comment: 4 pages, RevTex, 2 figures, Submitted to Phys. Rev. Let

    The Irreducible String and an Infinity of Additional Constants of Motion in a Deposition-Evaporation Model on a Line

    Get PDF
    We study a model of stochastic deposition-evaporation with recombination, of three species of dimers on a line. This model is a generalization of the model recently introduced by Barma {\it et. al.} (1993 {\it Phys. Rev. Lett.} {\bf 70} 1033) to q3q\ge 3 states per site. It has an infinite number of constants of motion, in addition to the infinity of conservation laws of the original model which are encoded as the conservation of the irreducible string. We determine the number of dynamically disconnected sectors and their sizes in this model exactly. Using the additional symmetry we construct a class of exact eigenvectors of the stochastic matrix. The autocorrelation function decays with different powers of tt in different sectors. We find that the spatial correlation function has an algebraic decay with exponent 3/2, in the sector corresponding to the initial state in which all sites are in the same state. The dynamical exponent is nontrivial in this sector, and we estimate it numerically by exact diagonalization of the stochastic matrix for small sizes. We find that in this case z=2.39±0.05z=2.39\pm0.05.Comment: Some minor errors in the first version has been correcte

    Effect of Noise on Patterns Formed by Growing Sandpiles

    Full text link
    We consider patterns generated by adding large number of sand grains at a single site in an abelian sandpile model with a periodic initial configuration, and relaxing. The patterns show proportionate growth. We study the robustness of these patterns against different types of noise, \textit{viz.}, randomness in the point of addition, disorder in the initial periodic configuration, and disorder in the connectivity of the underlying lattice. We find that the patterns show a varying degree of robustness to addition of a small amount of noise in each case. However, introducing stochasticity in the toppling rules seems to destroy the asymptotic patterns completely, even for a weak noise. We also discuss a variational formulation of the pattern selection problem in growing abelian sandpiles.Comment: 15 pages,16 figure

    Comment on ``Can Disorder Induce a Finite Thermal Conductivity in 1D Lattices?''

    Full text link
    In a recent paper [Phys. Rev. Lett. 86, 63 (2001)], Li et al have reported that the nonequilibrium heat conducting steady state of a disordered harmonic chain is not unique. In this comment we point out that for a large class of stochastic heat baths the uniqueness of the steady state can be proved, and therefore the findings of Li et al could be either due to their use of deterministic heat baths or insufficient equilibration times in the simulations. We give a simple example where the uniquness of the steady state can be explicitly demonstrated.Comment: 1 page, 1 figure, accepted for publication in Phys. Rev. Let
    corecore