29 research outputs found
CMS physics technical design report : Addendum on high density QCD with heavy ions
Peer reviewe
Exploring the Mass Concentration of Particulate Matter and Its Relationship with Meteorological Parameters in the Hindu-Kush Range
Particulate matter (PM) is among the deadliest air pollutants due to its negative health impacts and environmental harm. This study reports on monthly and seasonal concentrations of PM10, PM2.5, and PM1, along with their ratios. Twelve-day samples were collected once a month in Mingora city (Swat, Pakistan) from January to December 2019 using a low volume sampler. Maximum average mass concentrations of PM10, PM2.5, and PM1 were recorded in December having values of 78, 56, and 32 μg m−3, respectively. Minimum average values for PM10 (44 μg m−3) and PM2.5 (25.1 μg m−3) were recorded in April, while the lowest PM1 (11 μg m−3) was recorded in August. In comparison to other months, the maximum average mass concentrations were 1.77 times (PM10), 2.23 times (PM2.5), and 2.9 times (PM1) higher in December. During the winter season, average mass concentrations remained high. Substantial correlation coefficients of 0.92, 0.79, and 0.75 were recorded between PM10 and PM2.5, PM2.5 and PM1, and PM2.5 and PM1, respectively. The overall average ratios PM2.5: PM10, PM1: PM2.5, and PM1: PM10 were 68.3, 52.6, and 35.4%, respectively. A moderate negative correlation of PM10, PM2.5, and PM1 with wind speed (−0.34, −0.39, and −0.41), a strong negative correlation with temperature (−0.69, −0.71, and −0.74) and rainfall (−0.63, −0.61, and −0.59), and a weak relationship with relative humidity (−0.32, −0.1, and −0.02) were recorded. © 2022 by the authors.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Upstream CRP-binding site is not essential for CRP-cAMP-mediated inhibition on the nifU promoter
Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon
Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis
Zinc and inflammatory/immune response in aging
Life-long antigenic burden determines a condition of chronic inflammation, with increased lymphocyte activation and proinflammatory cytokine production. A large number of studies have documented changes in zinc metabolism in experimental animal models of acute and chronic inflammation and in human chronic inflammatory conditions. In particular, modification of zinc plasma concentration, as well as intracellular disturbance of antioxidant intracellular pathways, has been found in aging and in some age-related diseases. Zinc deficiency is diffused in aged individuals in order to avoid meat and other high zinc content foods due to fear of cholesterol. Rather, they increase the consumption of refined wheat products that lack zinc and other critical nutrients as a consequence of the refining process. On the other hand, plasma zinc concentration is influenced by proinflammatory cytokines (IL-6 and TNF-alpha) and by metallothioneins (MT) homeostasis, which is in turn affected by proinflammatory cytokines. MT increase in aging and chronic inflammation allowing a continuous sequestration of intracellular zinc with subsequent low zinc ion availability against stressor agents and inflammation. This phenomenon leads to an impaired inflammatory/immune response in the elderly. A major target of zinc is NF-kappa B, a transcription factor critical for the expression of proinflammatory cytokines whose production is regulated by extra- and intracellular activating and inhibiting factors interacting with the regulatory elements on cytokine genes. Effects of zinc on translocation of NF-kappa B have been attributed to the suppression of phosphorylation and degradation of the inhibitory proteins (A20) that normally sequester it in the cytoplasm. Moreover, this factor and A20 are regulated by specific genes involved in inflammation and by intracellular zinc ion availability. So, it is not so surprising that zinc deficiency is constantly observed in chronic inflammation, such as in old individuals. On the other hand, cytokine genes are highly polymorphic and some of these polymorphisms are associated with atherosclerosis and diabetes type 2. Therefore, zinc turnover, via MT homeostasis, in individuals genetically predisposed to a dysregulation of the inflammatory/immune response may play a crucial role in causing possible adverse events with the appearance of age-related diseases
