1,742 research outputs found
Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector
The Project 8 collaboration seeks to measure the absolute neutrino mass scale
by means of precision spectroscopy of the beta decay of tritium. Our technique,
cyclotron radiation emission spectroscopy, measures the frequency of the
radiation emitted by electrons produced by decays in an ambient magnetic field.
Because the cyclotron frequency is inversely proportional to the electron's
Lorentz factor, this is also a measurement of the electron's energy. In order
to demonstrate the viability of this technique, we have assembled and
successfully operated a prototype system, which uses a rectangular waveguide to
collect the cyclotron radiation from internal conversion electrons emitted from
a gaseous Kr source. Here we present the main design aspects of the
first phase prototype, which was operated during parts of 2014 and 2015. We
will also discuss the procedures used to analyze these data, along with the
features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International
Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
First E region observations of mesoscale neutral wind interaction with auroral arcs
We report the first observations of E region neutral wind fields and their interaction with auroral arcs at mesoscale spatial resolution during geomagnetically quiet conditions at Mawson, Antarctica. This was achieved by using a scanning Doppler imager, which can observe thermospheric neutral line-of-sight winds and temperatures simultaneously over a wide field of view. In two cases, the background E region wind field was perpendicular to an auroral arc, which when it appeared caused the wind direction within ∼50 km of the arc to rotate parallel along the arc, reverting to the background flow direction when the arc disappeared. This was observed under both westward and eastward plasma convection. The wind rotations occurred within 7–16 min. In one case, as an auroral arc propagated from the horizon toward the local zenith, the background E region wind field became significantly weaker but remained unaffected where the arc had not passed through. We demonstrate through modeling that these effects cannot be explained by height changes in the emission layer. The most likely explanation seems to be the greatly enhanced ion drag associated with the increased plasma density and localized ionospheric electric field associated with auroral arcs. In all cases, the F region neutral wind appeared less affected by the auroral arc, although its presence is clear in the data
Dead layer on silicon p-i-n diode charged-particle detectors
Semiconductor detectors in general have a dead layer at their surfaces that
is either a result of natural or induced passivation, or is formed during the
process of making a contact. Charged particles passing through this region
produce ionization that is incompletely collected and recorded, which leads to
departures from the ideal in both energy deposition and resolution. The silicon
\textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a
dead layer. We have constructed a detailed Monte Carlo model for the passage of
electrons from vacuum into a silicon detector, and compared the measured energy
spectra to the predicted ones for a range of energies from 12 to 20 keV. The
comparison provides experimental evidence that a substantial fraction of the
ionization produced in the "dead" layer evidently escapes by diffusion, with
46% being collected in the depletion zone and the balance being neutralized at
the contact or by bulk recombination. The most elementary model of a thinner
dead layer from which no charge is collected is strongly disfavored.Comment: Manuscript submitted to NIM
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
Statistical Characterization of the Chandra Source Catalog
The first release of the Chandra Source Catalog (CSC) contains ~95,000 X-ray
sources in a total area of ~0.75% of the entire sky, using data from ~3,900
separate ACIS observations of a multitude of different types of X-ray sources.
In order to maximize the scientific benefit of such a large, heterogeneous
data-set, careful characterization of the statistical properties of the
catalog, i.e., completeness, sensitivity, false source rate, and accuracy of
source properties, is required. Characterization efforts of other, large
Chandra catalogs, such as the ChaMP Point Source Catalog (Kim et al. 2007) or
the 2 Mega-second Deep Field Surveys (Alexander et al. 2003), while
informative, cannot serve this purpose, since the CSC analysis procedures are
significantly different and the range of allowable data is much less
restrictive. We describe here the characterization process for the CSC. This
process includes both a comparison of real CSC results with those of other,
deeper Chandra catalogs of the same targets and extensive simulations of
blank-sky and point source populations.Comment: To be published in the Astrophysical Journal Supplement Series (Fig.
52 replaced with a version which astro-ph can convert to PDF without issues.
Recommended from our members
Searches For High-Frequency Variations In The B-8 Solar Neutrino Flux At The Sudbury Neutrino Observatory
We have performed three searches for high-frequency signals in the solar neutrino flux measured by the Sudbury Neutrino Observatory, motivated by the possibility that solar g-mode oscillations could affect the production or propagation of solar B-8 neutrinos. The first search looked for any significant peak in the frequency range 1-144 day(-1), with a sensitivity to sinusoidal signals with amplitudes of 12% or greater. The second search focused on regions in which g-mode signals have been claimed by experiments aboard the Solar and Heliospheric Observatory satellite, and was sensitive to signals with amplitudes of 10% or greater. The third search looked for extra power across the entire frequency band. No statistically significant signal was detected in any of the three searches.Natural Sciences and Engineering Research Council, CanadaIndustry Canada, CanadaNational Research Council, CanadaNorthern Ontario Heritage Fund, CanadaAtomic Energy of Canada, Ltd., CanadaOntario Power Generation, CanadaHigh Performance Computing Virtual Laboratory, CanadaCanada Foundation for InnovationDept. of Energy, USNational Energy Research Scientific Computing Center, USScience and Technologies Facilities Council, UKAstronom
Single electron detection and spectroscopy via relativistic cyclotron radiation
It has been understood since 1897 that accelerating charges must emit
electromagnetic radiation. Cyclotron radiation, the particular form of
radiation emitted by an electron orbiting in a magnetic field, was first
derived in 1904. Despite the simplicity of this concept, and the enormous
utility of electron spectroscopy in nuclear and particle physics,
single-electron cyclotron radiation has never been observed directly. Here we
demonstrate single-electron detection in a novel radiofrequency spec- trometer.
We observe the cyclotron radiation emitted by individual magnetically-trapped
electrons that are produced with mildly-relativistic energies by a gaseous
radioactive source. The relativistic shift in the cyclotron frequency permits a
precise electron energy measurement. Precise beta elec- tron spectroscopy from
gaseous radiation sources is a key technique in modern efforts to measure the
neutrino mass via the tritium decay endpoint, and this work demonstrates a
fundamentally new approach to precision beta spectroscopy for future neutrino
mass experiments.Comment: 6 pages, 3 figure
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
- …
