4,243 research outputs found
Macro- and micro-strain in GaN nanowires on Si(111)
We analyze the strain state of GaN nanowire ensembles by x-ray diffraction.
The nanowires are grown by molecular beam epitaxy on a Si(111) substrate in a
self-organized manner. On a macroscopic scale, the nanowires are found to be
free of strain. However, coalescence of the nanowires results in micro-strain
with a magnitude from +-0.015% to +-0.03%.This micro-strain contributes to the
linewidth observed in low-temperature photoluminescence spectra
Maskin-Monotonic Scoring Rules
Cataloged from PDF version of article.We characterize which scoring rules are Maskin-monotonic for each social choice problem as a function of the number of agents and the number of alternatives. We show that a scoring rule is Maskin-monotonic if and only if it satisfies a certain unanimity condition. Since scoring rules are neutral, Maskin-monotonicity turns out to be equivalent to Nash-implementability within the class of scoring rules. We propose a class of mechanisms such that each Nash-implementable scoring rule can be implemented via a mechanism in that class. Moreover, we investigate the class of generalized scoring rules and show that with a restriction on score vectors, our results for the standard case are still valid
Phase sensitive detection of dipole radiation in a fiber-based high numerical aperture optical system
We theoretically study the problem of detecting dipole radiation in an
optical system of high numerical aperture in which the detector is sensitive to
\textit{field amplitude}. In particular, we model the phase sensitive detector
as a single-mode cylindrical optical fiber. We find that the maximum in
collection efficiency of the dipole radiation does not coincide with the
optimum resolution for the light gathering instrument. The calculated results
are important for analyzing fiber-based confocal microscope performance in
fluorescence and spectroscopic studies of single molecules and/or quantum dots.Comment: 12 pages, 2 figure
A Parameterised Complexity Analysis of Bi-level Optimisation with Evolutionary Algorithms
Bi-level optimisation problems have gained increasing interest in the field of combinatorial optimisation in recent years. In this paper, we analyse the runtime of some evolutionary algorithms for bi-level optimisation problems. We examine two NP-hard problems, the generalised minimum spanning tree problem and the generalised travelling salesperson problem in the context of parameterised complexity. For the generalised minimum spanning tree problem, we analyse the two approaches presented by Hu and Raidl (2012) with respect to the number of clusters that distinguish each other by the chosen representation of possible solutions. Our results show that a (1+1) evolutionary algorithm working with the spanning nodes representation is not a fixed-parameter evolutionary algorithm for the problem, whereas the problem can be solved in fixed-parameter time with the global structure representation. We present hard instances for each approach and show that the two approaches are highly complementary by proving that they solve each other’s hard instances very efficiently. For the generalised travelling salesperson problem, we analyse the problem with respect to the number of clusters in the problem instance. Our results show that a (1+1) evolutionary algorithm working with the global structure representation is a fixed-parameter evolutionary algorithm for the problem
SPB stars in the open SMC cluster NGC 371
Pulsation in beta Cep and SPB stars are driven by the kappa mechanism which
depends critically on the metallicity. It has therefore been suggested that
beta Cep and SPB stars should be rare in the Magellanic Clouds which have lower
metallicities than the solar neighborhood. To test this prediction we have
observed the open SMC cluster NGC 371 for 12 nights in order to search for beta
Cep and SPB stars. Surprisingly, we find 29 short-period B-type variables in
the upper part of the main sequence, many of which are probably SPB stars. This
result indicates that pulsation is still driven by the kappa mechanism even in
low metallicity environments. All the identified variables have periods longer
than the fundamental radial period which means that they cannot be beta Cep
stars. Within an amplitude detection limit of 5 mmag no stars in the top of the
HR-diagram show variability with periods shorter than the fundamental radial
period. So if beta Cep stars are present in the cluster they oscillate with
amplitudes below 5 mmag, which is significantly lower than the mean amplitude
of beta Cep stars in the Galaxy. We see evidence that multimode pulsation is
more common in the upper part of the main sequence than in the lower. We have
also identified 5 eclipsing binaries and 3 periodic pulsating Be stars in the
cluster field.Comment: 8 pages, 11 figures. Accepted for publication in MNRA
Adaptive Output Feedback Control of the NASA GTM Model with Unknown Nonminimum-Phase Zeros
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90722/1/AIAA-2011-6204-387.pd
- …
