5,236 research outputs found

    The Cost of Worker Misclassification in New York State

    Get PDF
    [Excerpt] This study uses data based on audits performed by the NYS Department of Labor Unemployment Insurance Division during the four-year period 2002-2005. Audits were performed on firms in certain industries, and data was extrapolated statewide for these industries only, based on given employment information. Using general and specific audits conducted during the four year period 2002-2005, it is estimated that 39,587 New York employers (of about 400,732) in audited industries misclassified workers each year as independent contractors. Of these, approximately 5,880 employers, or 14.9%, were in the construction industry

    Term papers, Google, and library anxiety: how can information literacy improve students\u27 research skills?

    Get PDF

    Atomic oxygen between 80 and 120 km: Evidence for a rapid spatial variation in vertical transport near the ionosphere

    Get PDF
    Analysis of OGO-6 OI green line photometer results was carried out for 8 cases when the alignment of the spacecraft was such that local emission rates could be determined below the altitude of maximum emission and down to about 80 km. Results show a variation on a scale of 6 deg to 8 deg in latitude between regions where the emission rate increases rapidly between 90 and 95 km and regions where it increases slowly from 80 km to 95 km. Latitude-altitude maps of iso-emissivity contours and iso-density contours for oxygen concentration are presented. The latter are computed under 3 assumptions concerning excitation mechanisms. Comparisons of the spatial variations of oxygen density with the results of a time dependent theory suggest the regions of strong downward transport alternate on a scale of about 1000 km with regions of weak transport near 90 km. In the first case conversion of O to O3 at night appears to be overwhelmed by downward transport of O

    Elevated cystatin-C concentration is associated with progression to prediabetes: the Western New York Study

    Get PDF
    OBJECTIVE – We conducted a nested case-control investigation to examine if elevated baseline concentrations of cystatin-C predicted progression from normoglycaemia to prediabetes over 6 years of follow-up from the Western New York Health Study. RESEARCH DESIGN AND METHODS – 1,455 participants from the Western New York Health Study, free of type 2 diabetes and known cardiovascular disease at baseline (1996-2001), were reexamined in 2002-2004. An incident case of prediabetes was defined as one with fasting glucose below 100 mg/dl at the baseline examination and ≥ 100 mg/dl and ≤ 125 mg/dl at the follow-up examination. All cases (n=91) were matched 1:3 to control participants based upon sex, race/ethnicity and year of study enrollment. All controls had fasting glucose levels < 100 mg/dl at both baseline and follow-up examinations. Cystatin-C concentrations and the urinary albumin to creatinine ratio were measured from frozen (-196 Cº) baseline blood and urine samples. Serum creatinine concentrations were available from the baseline examination. RESULTS –Multivariate conditional logistic regression analyses adjusted for age, baseline glucose level, HOMA-IR, body mass index, hypertension, eGFR, cigarette smoking, and alcohol use revealed a significantly increased risk of progression to prediabetes among those with elevated baseline concentrations of cystatin-C (Odds Ratio, 95% CI: 3.04, 1.34, 6.89) (upper quintile vs. the remainder). Results of secondary analyses that considered hs-CRP, IL-6, E-selectin, or sICAM did not alter these results. CONCLUSIONS - These results suggest that early renal impairment indexed with cystatin-C imparted a three-fold excess risk of progression to prediabetes in this study population. Recent evidence from randomized clinical trials (1,2) among people with prediabetes have provided convincing evidence that early intervention can significantly delay or prevent the progression to type 2 diabetes. The identification of those with prediabetes is assuming greater importance (3) especially in light of the fact that approximately 35 million adults aged 40-74 years old in the United States have prediabetes defined as impaired fasting glucose (4). Microalbuminuria occurs frequently in nondiabetic subjects and places them at increased risk for cardiovascular disease (5-7). The mechanisms behind this observation are poorly understood, however. Albuminuria may reflect underlying vascular damage (8), hypertension (9, 10) endothelial dysfunction (11, 12) and/or low-grade inflammation (13). A large percentage of type 2 individuals pass through a period of prediabetes (14) and may experience early renal dysfunction e.g., a glomerular filtration rate (GFR) above 60 ml/minute per 1.73m2. Currently used estimating equations are poor at identifying early renal impairment and better indices are of great interest (15, 16). Recently, several studies have suggested that cystatin-C levels may be a more sensitive marker of early renal impairment than either albuminuria or serum creatinine concentration (17-20). Therefore, a better understanding of a putative role for cystatin-C in the etiology of prediabetes could shed light on the renal/heart disease connection (21). Given the reported superiority of cystatin C over conventional measures of renal function, we hypothesized that cystatin-C would predict progression to prediabetes independent of serum creatinine or estimated GFR. We also investigated the role of intervening mechanisms including hypertension, insulin resistance, endothelial dysfunction and inflammation

    Two Clusters with Radio-quiet Cooling Cores

    Full text link
    Radio lobes inflated by active galactic nuclei at the centers of clusters are a promising candidate for halting condensation in clusters with short central cooling times because they are common in such clusters. In order to test the AGN-heating hypothesis, we obtained Chandra observations of two clusters with short central cooling times yet no evidence for AGN activity: Abell 1650 and Abell 2244. The cores of these clusters indeed appear systematically different from cores with more prominent radio emission. They do not have significant central temperature gradients, and their central entropy levels are markedly higher than in clusters with stronger radio emission, corresponding to central cooling times ~ 1 Gigayear. Also, there is no evidence for fossil X-ray cavities produced by an earlier episode of AGN heating. We suggest that either (1) the central gas has not yet cooled to the point at which feedback is necessary to prevent it from condensing, possibly because it is conductively stabilized, or (2) the gas experienced a major heating event 1\gtrsim 1 Gyr in the past and has not required feedback since then. The fact that these clusters with no evident feedback have higher central entropy and therefore longer central cooling times than clusters with obvious AGN feedback strongly suggests that AGNs supply the feedback necessary to suppress condensation in clusters with short central cooling times.Comment: ApJ Letter, in pres

    Polarization Diagnostics for Cool Core Cluster Emission Lines

    Get PDF
    The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe

    Direct observation of domain wall structures in curved permalloy wires containing an antinotch

    Get PDF
    The formation and field response of head-to-head domain walls in curved permalloy wires, fabricated to contain a single antinotch, have been investigated using Lorentz microscopy. High spatial resolution maps of the vector induction distribution in domain walls close to the antinotch have been derived and compared with micromagnetic simulations. In wires of 10 nm thickness the walls are typically of a modified asymmetric transverse wall type. Their response to applied fields tangential to the wire at the antinotch location was studied. The way the wall structure changes depends on whether the field moves the wall away from or further into the notch. Higher fields are needed and much more distorted wall structures are observed in the latter case, indicating that the antinotch acts as an energy barrier for the domain wal

    Space Transportation System Availability Relationships to Life Cycle Cost

    Get PDF
    Future space transportation architectures and designs must be affordable. Consequently, their Life Cycle Cost (LCC) must be controlled. For the LCC to be controlled, it is necessary to identify all the requirements and elements of the architecture at the beginning of the concept phase. Controlling LCC requires the establishment of the major operational cost drivers. Two of these major cost drivers are reliability and maintainability, in other words, the system's availability (responsiveness). Potential reasons that may drive the inherent availability requirement are the need to control the number of unique parts and the spare parts required to support the transportation system's operation. For more typical space transportation systems used to place satellites in space, the productivity of the system will drive the launch cost. This system productivity is the resultant output of the system availability. Availability is equal to the mean uptime divided by the sum of the mean uptime plus the mean downtime. Since many operational factors cannot be projected early in the definition phase, the focus will be on inherent availability which is equal to the mean time between a failure (MTBF) divided by the MTBF plus the mean time to repair (MTTR) the system. The MTBF is a function of reliability or the expected frequency of failures. When the system experiences failures the result is added operational flow time, parts consumption, and increased labor with an impact to responsiveness resulting in increased LCC. The other function of availability is the MTTR, or maintainability. In other words, how accessible is the failed hardware that requires replacement and what operational functions are required before and after change-out to make the system operable. This paper will describe how the MTTR can be equated to additional labor, additional operational flow time, and additional structural access capability, all of which drive up the LCC. A methodology will be presented that provides the decision makers with the understanding necessary to place constraints on the design definition. This methodology for the major drivers will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system. This methodology will focus on the achievement of an affordable, responsive space transportation system. It is the intent of this paper to not only provide the visibility of the relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also to provide the capability to bound the variables, thus providing the insight required to control the system's engineering solution. An example of this visibility is the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also, selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement, or require accepting a larger parts count with the resulting higher individual part reliability requirements. This paper will provide an understanding of the relationship of mean repair time (mean downtime) to maintainability (accessibility for repair), and both mean time between failure (reliability of hardware) and the system inherent availability
    corecore