5,943 research outputs found
Clone flow analysis for a theory inspired Neutrino Experiment planning
The presence of several clone solutions in the simultaneous measurement of
() has been widely discussed in literature. In this letter
we write the analytical formulae of the clones location in the
() plane as a function of the physical input pair
(). We show how the clones move with changing
. The "clone flow" can be significantly different if computed
(naively) from the oscillation probabilities or (exactly) from the
probabilities integrated over the neutrino flux and cross-section.
Using our complete computation we compare the clone flow of a set of possible
future neutrino experiments: the CERN SuperBeam, BetaBeam and Neutrino Factory
proposals. We show that the combination of these specific BetaBeam and
SuperBeam does not help in solving the degeneracies. On the contrary, the
combination of one of them with the Neutrino Factory Golden and Silver channel
can be used, from a theoretical point of view, to solve completely the
eightfold degeneracy.Comment: 23 pages, using epsfi
Golden measurements at a neutrino factory
The precision and discovery potential of a neutrino factory based on muon
storage rings is studied. For three-family neutrino oscillations, we analyse
how to measure or severely constraint the angle , CP violation,
MSW effects and the sign of the atmospheric mass difference .
We present a simple analytical formula for the oscillation probabilities in
matter, with all neutrino mass differences non-vanishing, which clarifies the
subtleties involved in disentangling the unknown parameters. The appearance of
``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500
km, and 7332 km. We exploit the dependence of the signal on the neutrino
energy, and include as well realistic background estimations and detection
efficiencies. The optimal baseline turns out to be km).
Analyses combining the information from different baselines are also presented.Comment: 45 pages, Latex2e, 24 figures using epsfig.sty. An incorrect
statement and a few misprints have been corrected. Results and conclusions
are unchange
Summary of Golden Measurements at a -Factory
The precision and discovery potential of a neutrino factory based on muon
storage rings is summarized. For three-family neutrino oscillations, we analyze
how to measure or severely constraint the angle , CP violation,
MSW effects and the sign of the atmospheric mass difference .
The appearance of ``wrong-sign muons'' at three reference baselines is
considered: 732 km, 3500 km and 7332 km. We exploit the dependence of the
signal on the neutrino energy, and include as well realistic background
estimations and detection efficiencies. The optimal baseline turns out to be
(3000 km).Comment: 7 pages, Latex2e, 5 eps figures, use package espfi
Lattice QCD Calculation of the Kaon B-parameter with the Wilson Quark Action
The kaon B parameter is calculated in quenched lattice QCD with the Wilson
quark action. The mixing problem of the \Delta s=2 four-quark operators is
solved non-perturbatively with full use of chiral Ward identities, and this
method enables us to construct the weak four-quark operators exhibiting good
chiral behavior. We find B_K(NDR, 2GeV)=0.562(64) in the continuum limit, which
agrees with the value obtained with the Kogut-Susskind quark action.Comment: 11 pages, latex source-file, 4 figures as ps-fil
A Beta Beam complex based on the machine upgrades for the LHC
The Beta Beam CERN design is based on the present LHC injection complex and
its physics reach is mainly limited by the maximum rigidity of the SPS. In
fact, some of the scenarios for the machine upgrades of the LHC, particularly
the construction of a fast cycling 1 TeV injector (``Super-SPS''), are very
synergic with the construction of a higher Beta Beam. At the energies
that can be reached by this machine, we demonstrate that dense calorimeters can
already be used for the detection of at the far location. Even at
moderate masses (40 kton) as the ones imposed by the use of existing
underground halls at Gran Sasso, the CP reach is very large for any value of
that would provide evidence of appearance at T2K or
NOA (). Exploitation of matter effects at the
CERN to Gran Sasso distance provides sensitivity to the neutrino mass hierarchy
in significant areas of the plane
, and the neutrino mass hierarchy at a double baseline Li/B -Beam
We consider a -Beam facility where Li and B ions are
accelerated at , accumulated in a 10 Km storage ring and let
decay, so as to produce intense and beams. These beams
illuminate two iron detectors located at Km and
Km, respectively. The physics potential of this setup is analysed in full
detail as a function of the flux. We find that, for the highest flux ( ion decays per year per baseline), the sensitivity to
reaches ; the sign of
the atmospheric mass difference can be identified, regardless of the true
hierarchy, for ; and, CP-violation
can be discovered in 70% of the -parameter space for , having some sensitivity to CP-violation down to
for .Comment: 35 pages, 20 figures. Minor changes, matches the published versio
A minimal Beta Beam with high-Q ions to address CP violation in the leptonic sector
In this paper we consider a Beta Beam setup that tries to leverage at most
existing European facilities: i.e. a setup that takes advantage of facilities
at CERN to boost high-Q ions (8Li and 8B) aiming at a far detector located at L
= 732 Km in the Gran Sasso Underground Laboratory. The average neutrino energy
for 8Li and 8B ions boosted at \gamma ~ 100 is in the range E_\nu = [1,2] GeV,
high enough to use a large iron detector of the MINOS type at the far site. We
perform, then, a study of the neutrino and antineutrino fluxes needed to
measure a CP-violating phase delta in a significant part of the parameter
space. In particular, for theta_13 > 3 deg, if an antineutrino flux of 3 10^19
useful 8Li decays per year is achievable, we find that delta can be measured in
60% of the parameter space with 6 10^18 useful 8B decays per year.Comment: 19 pages, 10 figures, added references and corrected typo
Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions
We present, both exactly and approximately, a complete set of mappings
between the vacuum (or fundamental) leptonic mixing parameters and the
effective ones in matter with non-standard neutrino interaction (NSI) effects
included. Within the three-flavor neutrino framework and a constant matter
density profile, a full set of sum rules is established, which enables us to
reconstruct the moduli of the effective leptonic mixing matrix elements, in
terms of the vacuum mixing parameters in order to reproduce the neutrino
oscillation probabilities for future long-baseline experiments. Very compact,
but quite accurate, approximate mappings are obtained based on series
expansions in the neutrino mass hierarchy parameter \eta \equiv \Delta
m^2_{21}/\Delta m^2_{31}, the vacuum leptonic mixing parameter s_{13} \equiv
\sin\theta_{13}, and the NSI parameters \epsilon_{\alpha\beta}. A detailed
numerical analysis about how the NSIs affect the smallest leptonic mixing angle
\theta_{13}, the deviation of the leptonic mixing angle \theta_{23} from its
maximal mixing value, and the transition probabilities useful for future
experiments are performed using our analytical results.Comment: 29 pages, 8 figures, final version published in J. High Energy Phy
U(1)' Symmetry Breaking in Supersymmetric E6 Models
We study the electroweak and symmetry breaking patterns in models
with the particle content of supersymmetric , including standard model
singlets and exotic quarks . Motivated by free fermionic string
models, we do not require -type relations between Yukawa couplings. In
particular, we assume that baryon and lepton numbers are conserved, so that the
exotic quarks can be light. Gauge invariance allows Yukawa interactions between
and Higgs doublets, and between and the exotic quarks, allowing
radiative symmetry breaking and the generation of an effective
parameter at the electroweak scale. For both the and
models, universal soft supersymmetry breaking parameters and Yukawa
universality at the high (string) scale do not yield acceptable low energy
phenomenology. Relaxing universality, we find solutions with phenomenologically
acceptable values of and the mixing angle. In addition,
by varying the charge assignments due to the mixing of
and of , it is possible to have acceptable low energy
phenomenology with universal boundary conditions.Comment: 24 pages, 6 figures, 4 tables, LaTex; minor revision of the numerical
results, typos corrected, reference adde
- …
