68,530 research outputs found
The Constitution and the Recovery Legislation: The Roles of Document, Doctrine, and Judges
Matlab is a proprietary, interactive, dynamically-typed language for technical computing. It is widely used for prototyping algorithms and applications of scientific computations. Since it is a dynamically typed language, the execution of programs has to be analyzed and interpreted which results in lower computational performance. In order to increase the performance and integrate with Modelica applications it is useful to be able to translate Matlab programs to statically typed Modelica programs. This project presents the design and implementation of Matlab to Modelica translator. The Lexical and Syntax analysis is done with the help of the OMCCp (OpenModelica Compiler Compiler parser generator) tool which generates the Matlab AST, which is later used by the translator for generating readable and reusable Modelica code
Fire protection for launch facilities using machine vision fire detection
Fire protection of critical space assets, including launch and fueling facilities and manned flight hardware, demands automatic sensors for continuous monitoring, and in certain high-threat areas, fast-reacting automatic suppression systems. Perhaps the most essential characteristic for these fire detection and suppression systems is high reliability; in other words, fire detectors should alarm only on actual fires and not be falsely activated by extraneous sources. Existing types of fire detectors have been greatly improved in the past decade; however, fundamental limitations of their method of operation leaves open a significant possibility of false alarms and restricts their usefulness. At the Civil Engineering Laboratory at Tyndall Air Force Base in Florida, a new type of fire detector is under development which 'sees' a fire visually, like a human being, and makes a reliable decision based on known visual characteristics of flames. Hardware prototypes of the Machine Vision (MV) Fire Detection System have undergone live fire tests and demonstrated extremely high accuracy in discriminating actual fires from false alarm sources. In fact, this technology promises to virtually eliminate false activations. This detector could be used to monitor fueling facilities, launch towers, clean rooms, and other high-value and high-risk areas. Applications can extend to space station and in-flight shuttle operations as well; fiber optics and remote camera heads enable the system to see around obstructed areas and crew compartments. The capability of the technology to distinguish fires means that fire detection can be provided even during maintenance operations, such as welding
- …
