628 research outputs found

    Coupled currents in cosmic strings

    Full text link
    We first examine the microstructure of a cosmic string endowed with two simple Abelian currents. This microstructure depends on two state parameters. We then provide the macroscopic description of such a string and show that it depends on an additional Lorentz-invariant state parameter that relates the two currents. We find that in most of the parameter space, the two-current string is essentially equivalent to the single current-carrying string, i.e., only one field condenses onto the defect. In the regions where two currents are present, we find that as far as stability is concerned, one can approximate the dynamics with good accuracy using an analytic model based on either a logarithmic (on the electric side, i.e., for timelike currents) or a rational (on the magnetic side, i.e., for spacelike currents) worldsheet Lagrangian.Comment: 25 pages, 9 figure

    Experimental evidence of solitary wave interaction in Hertzian chains

    Full text link
    We study experimentally the interaction between two solitary waves that approach one to another in a linear chain of spheres interacting via the Hertz potential. When these counter propagating waves collide, they cross each other and a phase shift respect to the noninteracting waves is introduced, as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and it is shown to be independent of viscoelastic dissipation at the beads contact. In addition, when the collision of equal amplitude and synchronized counter propagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitude are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the beads contacts during solitary wave propagation

    Super Stability of Laminar Vortex Flow in Superfluid 3He-B

    Full text link
    Vortex flow remains laminar up to large Reynolds numbers (Re~1000) in a cylinder filled with 3He-B. This is inferred from NMR measurements and numerical vortex filament calculations where we study the spin up and spin down responses of the superfluid component, after a sudden change in rotation velocity. In normal fluids and in superfluid 4He these responses are turbulent. In 3He-B the vortex core radius is much larger which reduces both surface pinning and vortex reconnections, the phenomena, which enhance vortex bending and the creation of turbulent tangles. Thus the origin for the greater stability of vortex flow in 3He-B is a quantum phenomenon. Only large flow perturbations are found to make the responses turbulent, such as the walls of a cubic container or the presence of invasive measuring probes inside the container.Comment: 4 pages, 6 figure

    Preventing transition to turbulence: a viscosity stratification does not always help

    Full text link
    In channel flows a step on the route to turbulence is the formation of streaks, often due to algebraic growth of disturbances. While a variation of viscosity in the gradient direction often plays a large role in laminar-turbulent transition in shear flows, we show that it has, surprisingly, little effect on the algebraic growth. Non-uniform viscosity therefore may not always work as a flow-control strategy for maintaining the flow as laminar.Comment: 9 pages, 8 figure

    Negaton and Positon Solutions of the KDV Equation

    Full text link
    We give a systematic classification and a detailed discussion of the structure, motion and scattering of the recently discovered negaton and positon solutions of the Korteweg-de Vries equation. There are two distinct types of negaton solutions which we label [Sn][S^{n}] and [Cn][C^{n}], where (n+1)(n+1) is the order of the Wronskian used in the derivation. For negatons, the number of singularities and zeros is finite and they show very interesting time dependence. The general motion is in the positive xx direction, except for certain negatons which exhibit one oscillation around the origin. In contrast, there is just one type of positon solution, which we label [C~n][\tilde C^n]. For positons, one gets a finite number of singularities for nn odd, but an infinite number for even values of nn. The general motion of positons is in the negative xx direction with periodic oscillations. Negatons and positons retain their identities in a scattering process and their phase shifts are discussed. We obtain a simple explanation of all phase shifts by generalizing the notions of ``mass" and ``center of mass" to singular solutions. Finally, it is shown that negaton and positon solutions of the KdV equation can be used to obtain corresponding new solutions of the modified KdV equation.Comment: 20 pages plus 12 figures(available from authors on request),Latex fil

    Loop Groups and Discrete KdV Equations

    Full text link
    A study is presented of fully discretized lattice equations associated with the KdV hierarchy. Loop group methods give a systematic way of constructing discretizations of the equations in the hierarchy. The lattice KdV system of Nijhoff et al. arises from the lowest order discretization of the trivial, lowest order equation in the hierarchy, b_t=b_x. Two new discretizations are also given, the lowest order discretization of the first nontrivial equation in the hierarchy, and a "second order" discretization of b_t=b_x. The former, which is given the name "full lattice KdV" has the (potential) KdV equation as a standard continuum limit. For each discretization a Backlund transformation is given and soliton content analyzed. The full lattice KdV system has, like KdV itself, solitons of all speeds, whereas both other discretizations studied have a limited range of speeds, being discretizations of an equation with solutions only of a fixed speed.Comment: LaTeX, 23 pages, 1 figur

    Statistical analysis of coherent structures in transitional pipe flow

    Get PDF
    Numerical and experimental studies of transitional pipe flow have shown the prevalence of coherent flow structures that are dominated by downstream vortices. They attract special attention because they contribute predominantly to the increase of the Reynolds stresses in turbulent flow. In the present study we introduce a convenient detector for these coherent states, calculate the fraction of time the structures appear in the flow, and present a Markov model for the transition between the structures. The fraction of states that show vortical structures exceeds 24% for a Reynolds number of about Re=2200, and it decreases to about 20% for Re=2500. The Markov model for the transition between these states is in good agreement with the observed fraction of states, and in reasonable agreement with the prediction for their persistence. It provides insight into dominant qualitative changes of the flow when increasing the Reynolds number.Comment: 11 pages, 26 (sub)figure

    A Study Of A New Class Of Discrete Nonlinear Schroedinger Equations

    Full text link
    A new class of 1D discrete nonlinear Schro¨{\ddot{\rm{o}}}dinger Hamiltonians with tunable nonlinerities is introduced, which includes the integrable Ablowitz-Ladik system as a limit. A new subset of equations, which are derived from these Hamiltonians using a generalized definition of Poisson brackets, and collectively refered to as the N-AL equation, is studied. The symmetry properties of the equation are discussed. These equations are shown to possess propagating localized solutions, having the continuous translational symmetry of the one-soliton solution of the Ablowitz-Ladik nonlinear Schro¨{\ddot{\rm{o}}}dinger equation. The N-AL systems are shown to be suitable to study the combined effect of the dynamical imbalance of nonlinearity and dispersion and the Peierls-Nabarro potential, arising from the lattice discreteness, on the propagating solitary wave like profiles. A perturbative analysis shows that the N-AL systems can have discrete breather solutions, due to the presence of saddle center bifurcations in phase portraits. The unstaggered localized states are shown to have positive effective mass. On the other hand, large width but small amplitude staggered localized states have negative effective mass. The collison dynamics of two colliding solitary wave profiles are studied numerically. Notwithstanding colliding solitary wave profiles are seen to exhibit nontrivial nonsolitonic interactions, certain universal features are observed in the collison dynamics. Future scopes of this work and possible applications of the N-AL systems are discussed.Comment: 17 pages, 15 figures, revtex4, xmgr, gn

    Formation of shock waves in a Bose-Einstein condensate

    Full text link
    We consider propagation of density wave packets in a Bose-Einstein condensate. We show that the shape of initially broad, laser-induced, density perturbation changes in the course of free time evolution so that a shock wave front finally forms. Our results are well beyond predictions of commonly used zero-amplitude approach, so they can be useful in extraction of a speed of sound from experimental data. We discuss a simple experimental setup for shock propagation and point out possible limitations of the mean-field approach for description of shock phenomena in a BEC.Comment: 8 pages & 6 figures, minor changes, more references, to appear in Phys. Rev.

    Flame Enhancement and Quenching in Fluid Flows

    Get PDF
    We perform direct numerical simulations (DNS) of an advected scalar field which diffuses and reacts according to a nonlinear reaction law. The objective is to study how the bulk burning rate of the reaction is affected by an imposed flow. In particular, we are interested in comparing the numerical results with recently predicted analytical upper and lower bounds. We focus on reaction enhancement and quenching phenomena for two classes of imposed model flows with different geometries: periodic shear flow and cellular flow. We are primarily interested in the fast advection regime. We find that the bulk burning rate v in a shear flow satisfies v ~ a*U+b where U is the typical flow velocity and a is a constant depending on the relationship between the oscillation length scale of the flow and laminar front thickness. For cellular flow, we obtain v ~ U^{1/4}. We also study flame extinction (quenching) for an ignition-type reaction law and compactly supported initial data for the scalar field. We find that in a shear flow the flame of the size W can be typically quenched by a flow with amplitude U ~ alpha*W. The constant alpha depends on the geometry of the flow and tends to infinity if the flow profile has a plateau larger than a critical size. In a cellular flow, we find that the advection strength required for quenching is U ~ W^4 if the cell size is smaller than a critical value.Comment: 14 pages, 20 figures, revtex4, submitted to Combustion Theory and Modellin
    corecore