383 research outputs found

    Precise timing when hitting falling balls

    Get PDF
    People are extremely good at hitting falling balls with a baseball bat. Despite the ball’s constant acceleration, they have been reported to time hits with a standard deviation of only about 7ms. To examine how people achieve such precision, we compared performance when there were no added restrictions, with performance when looking with one eye, when vision was blurred, and when various parts of the ball’s trajectory were hidden from view. We also examined how the size of the ball and varying the height from which it was dropped influenced temporal precision. Temporal precision did not become worse when vision was blurred, when the ball was smaller, or when balls falling from different heights were randomly interleaved. The disadvantage of closing one eye did not exceed expectations from removing one of two independent estimates. Precision was higher for slower balls, but only if the ball being slower meant that one saw it longer before the hit. It was particularly important to see the ball while swinging the bat. Together, these findings suggest that people time their hits so precisely by using the changing elevation throughout the swing to adjust the bat’s movement to that of the ball

    Probing scalar-pseudoscalar mixing in the CP violating MSSM at high-energy e+ee^+e^- colliders

    Full text link
    We study the production processes e+eHi0Ze^+e^-\to H^0_iZ, Hi0Hj0H^0_iH^0_j and Hi0νeνeH^0_i\nu_e\overline \nu_e in the context of the CP violating MSSM. In a given channel we show that the cross-section for all i (=1,2,3) can be above 0.1 fb provided M_{H_{2,3}}\la 300 GeV. This should be detectable at a Next Linear Collider and would provide evidence for scalar-pseudoscalar mixing.Comment: 17 pages, RevTex, 4 ps figures, figure 4 changed, minor modifications to text, version to appear in PR

    Resumming the color-octet contribution to e+ e- -> J/psi + X

    Full text link
    Recent observations of the spectrum of J/psi produced in e+ e- collisions at the Upsilon(4S) resonance are in conflict with fixed-order calculations using the Non-Relativistic QCD (NRQCD) effective field theory. One problem is that leading order color-octet mechanisms predict an enhancement of the cross section for J/psi with maximal energy that is not observed in the data. However, in this region of phase space large perturbative corrections (Sudakov logarithms) as well as enhanced nonperturbative effects are important. In this paper we use the newly developed Soft-Collinear Effective Theory (SCET) to systematically include these effects. We find that these corrections significantly broaden the color-octet contribution to the J/psi spectrum. Our calculation employs a one-stage renormalization group evolution rather than the two-stage evolution used in previous SCET calculations. We give a simple argument for why the two methods yield identical results to lowest order in the SCET power counting.Comment: 27 pages, 7 figure

    Testing J/psi Production and Decay Properties in Hadronic Collisions

    Full text link
    The polar and azimuthal angular distributions for the lepton pair arising from the decay of a J/psi meson produced at transverse momentum p_T balanced by a photon [or gluon] in hadronic collisions are calculated in the color singlet model (CSM). It is shown that the general structure of the decay lepton distribution is controlled by four invariant structure functions, which are functions of the transverse momentum and the rapidity of the J/psi. We found that two of these structure functions [the longitudinal and transverse interference structure functions] are identical in the CSM. Analytical and numerical results are given in the Collins-Soper and in the Gottfried-Jackson frame. We present a Monte Carlo study of the effect of acceptance cuts applied to the leptons and the photon for J/psi+ gamma production at the Tevatron.Comment: 22 pages (LaTeX) plus 11 postscript figures, MAD/PH/822, YUMS94-11. Figures are available from the authors or as a compressed tar file via anonymous ftp at phenom.physics.wisc.edu in directory {}~pub/preprints/madph-94-822-figs.tar.

    Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks

    Get PDF
    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia

    On loss aversion in bimatrix games

    Get PDF
    ABSTRACT. In this article three different types of loss aversion equilibria in bimatrix games are studied. Loss aversion equilibria are Nash equilibria of games where players are loss averse and where the reference points-points below which they consider payoffs to be lossesare endogenous to the equilibrium calculation. The first type is the fixed point loss aversion equilibrium, introduced in Shalev (2000; Int. J. Game Theory 29(2):269) under the name of 'myopic loss aversion equilibrium.' There, the players' reference points depend on the beliefs about their opponents' strategies. The second type, the maximin loss aversion equilibrium, differs from the fixed point loss aversion equilibrium in that the reference points are only based on the carriers of the strategies, not on the exact probabilities. In the third type, the safety level loss aversion equilibrium, the reference points depend on the values of the own payoff matrices. Finally, a comparative statics analysis is carried out of all three equilibrium concepts in 2 × 2 bimatrix games. It is established when a player benefits from his opponent falsely believing that he is loss averse

    Characterization of an inertial micro gripper based on adhesion forces

    Get PDF
    Adhesive forces become predominant in the micro world comparing to the gravity effect implying the development of new micro manipulation strategies. This paper presents the design and conception of a gripper that use the inertial principle for the release (applying a high acceleration, in the order of 10’000g) and the adhesion for catching a micro part of 50μm with the goal of precisely control the position after release. Experiments were conducted and showed a positioning repeatability of 2μm to 6μm depending on the relative humidity with a success rate of more than 90%
    corecore