981 research outputs found
Black-Box Complexity: Breaking the Barrier of LeadingOnes
We show that the unrestricted black-box complexity of the -dimensional
XOR- and permutation-invariant LeadingOnes function class is . This shows that the recent natural looking bound is
not tight.
The black-box optimization algorithm leading to this bound can be implemented
in a way that only 3-ary unbiased variation operators are used. Hence our bound
is also valid for the unbiased black-box complexity recently introduced by
Lehre and Witt (GECCO 2010). The bound also remains valid if we impose the
additional restriction that the black-box algorithm does not have access to the
objective values but only to their relative order (ranking-based black-box
complexity).Comment: 12 pages, to appear in the Proc. of Artificial Evolution 2011, LNCS
7401, Springer, 2012. For the unrestricted black-box complexity of
LeadingOnes there is now a tight bound, cf.
http://eccc.hpi-web.de/report/2012/087
Weighted Automata and Logics for Infinite Nested Words
Nested words introduced by Alur and Madhusudan are used to capture structures
with both linear and hierarchical order, e.g. XML documents, without losing
valuable closure properties. Furthermore, Alur and Madhusudan introduced
automata and equivalent logics for both finite and infinite nested words, thus
extending B\"uchi's theorem to nested words. Recently, average and discounted
computations of weights in quantitative systems found much interest. Here, we
will introduce and investigate weighted automata models and weighted MSO logics
for infinite nested words. As weight structures we consider valuation monoids
which incorporate average and discounted computations of weights as well as the
classical semirings. We show that under suitable assumptions, two resp. three
fragments of our weighted logics can be transformed into each other. Moreover,
we show that the logic fragments have the same expressive power as weighted
nested word automata.Comment: LATA 2014, 12 page
Fourth order indirect integration method for black hole perturbations: even modes
On the basis of a recently proposed strategy of finite element integration in
time domain for partial differential equations with a singular source term, we
present a fourth order algorithm for non-rotating black hole perturbations in
the Regge-Wheeler gauge. Herein, we address even perturbations induced by a
particle plunging in. The forward time value at the upper node of the
grid cell is obtained by an algebraic sum of i) the preceding node values of
the same cell, ii) analytic expressions, related to the jump conditions on the
wave function and its derivatives, iii) the values of the wave function at
adjacent cells. In this approach, the numerical integration does not deal with
the source and potential terms directly, for cells crossed by the particle
world line. This scheme has also been applied to circular and eccentric orbits
and it will be object of a forthcoming publication.Comment: This series of papers deals with EMRI for LISA. With the respect to
the v1 version, the algorithm has been improved; convergence tests and
references have been added; v2 is composed by 23 pages, and 6 figures. Paper
accepted by Class. Quantum Gravity for the special issue on Theory Meets Data
Analysis at Comparable and Extreme Mass Ratios (Capra and NRDA) at Perimeier
Institute in June 201
The theory of the exponential differential equations of semiabelian varieties
The complete first order theories of the exponential differential equations
of semiabelian varieties are given. It is shown that these theories also arises
from an amalgamation-with-predimension construction in the style of Hrushovski.
The theory includes necessary and sufficient conditions for a system of
equations to have a solution. The necessary condition generalizes Ax's
differential fields version of Schanuel's conjecture to semiabelian varieties.
There is a purely algebraic corollary, the "Weak CIT" for semiabelian
varieties, which concerns the intersections of algebraic subgroups with
algebraic varieties.Comment: 53 pages; v3: Substantial changes, including a completely new
introductio
Evolutionary design of a full-envelope full-authority flight control system for an unstable high-performance aircraft
The use of an evolutionary algorithm in the framework of H1 control theory is being considered as a means for synthesizing controller gains that minimize a weighted combination of the infinite norm of the sensitivity function (for disturbance attenuation requirements) and complementary sensitivity function (for robust stability requirements) at the same time. The case study deals with a complete full-authority longitudinal control system for an unstable high-performance jet aircraft featuring (i) a stability and control augmentation system and (ii) autopilot functions (speed and altitude hold). Constraints on closed-loop response are enforced, that representing typical requirements on airplane handling qualities, that makes the control law synthesis process more demanding. Gain scheduling is required, in order to obtain satisfactory performance over the whole flight envelope, so that the synthesis is performed at different reference trim conditions, for several values of the dynamic pressure, used as the scheduling parameter. Nonetheless, the dynamic behaviour of the aircraft may exhibit significant variations when flying at different altitudes, even for the same value of the dynamic pressure, so that a trade-off is required between different feasible controllers synthesized at different altitudes for a given equivalent airspeed. A multiobjective search is thus considered for the determination of the best suited solution to be introduced in the scheduling of the control law. The obtained results are then tested on a longitudinal non-linear model of the aircraft
A dynamic logic for every season
This paper introduces a method to build dynamic logics with a graded semantics. The construction is parametrized by a structure to support both the spaces of truth and of the domain of computations. Possible instantiations of the method range from classical assertional) dynamic logic to less common graded logics suitable to deal with programs whose transitional semantics exhibits fuzzy or weighted behaviour.This leads to the systematic derivation of program logics tailored to specific program classes
Relativistic Celestial Mechanics with PPN Parameters
Starting from the global parametrized post-Newtonian (PPN) reference system
with two PPN parameters and we consider a space-bounded
subsystem of matter and construct a local reference system for that subsystem
in which the influence of external masses reduces to tidal effects. Both the
metric tensor of the local PPN reference system in the first post-Newtonian
approximation as well as the coordinate transformations between the global PPN
reference system and the local one are constructed in explicit form. The terms
proportional to reflecting a violation of the
equivalence principle are discussed in detail. We suggest an empirical
definition of multipole moments which are intended to play the same role in PPN
celestial mechanics as the Blanchet-Damour moments in General Relativity.
Starting with the metric tensor in the local PPN reference system we derive
translational equations of motion of a test particle in that system. The
translational and rotational equations of motion for center of mass and spin of
each of extended massive bodies possessing arbitrary multipole structure
are derived. As an application of the general equations of motion a
monopole-spin dipole model is considered and the known PPN equations of motion
of mass monopoles with spins are rederived.Comment: 71 page
- …
