24,936 research outputs found
A Numerical Study of Methods for Moist Atmospheric Flows: Compressible Equations
We investigate two common numerical techniques for integrating reversible
moist processes in atmospheric flows in the context of solving the fully
compressible Euler equations. The first is a one-step, coupled technique based
on using appropriate invariant variables such that terms resulting from phase
change are eliminated in the governing equations. In the second approach, which
is a two-step scheme, separate transport equations for liquid water and vapor
water are used, and no conversion between water vapor and liquid water is
allowed in the first step, while in the second step a saturation adjustment
procedure is performed that correctly allocates the water into its two phases
based on the Clausius-Clapeyron formula. The numerical techniques we describe
are first validated by comparing to a well-established benchmark problem.
Particular attention is then paid to the effect of changing the time scale at
which the moist variables are adjusted to the saturation requirements in two
different variations of the two-step scheme. This study is motivated by the
fact that when acoustic modes are integrated separately in time (neglecting
phase change related phenomena), or when sound-proof equations are integrated,
the time scale for imposing saturation adjustment is typically much larger than
the numerical one related to the acoustics
A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II
We present a semi-decision procedure to tackle first order differential
equations, with Liouvillian functions in the solution (LFOODEs). As in the case
of the Prelle-Singer procedure, this method is based on the knowledge of the
integrating factor structure.Comment: 11 pages, late
A Hybrid Adaptive Low-Mach-Number/Compressible Method: Euler Equations
Flows in which the primary features of interest do not rely on high-frequency
acoustic effects, but in which long-wavelength acoustics play a nontrivial
role, present a computational challenge. Integrating the entire domain with
low-Mach-number methods would remove all acoustic wave propagation, while
integrating the entire domain with the fully compressible equations can in some
cases be prohibitively expensive due to the CFL time step constraint. For
example, simulation of thermoacoustic instabilities might require fine
resolution of the fluid/chemistry interaction but not require fine resolution
of acoustic effects, yet one does not want to neglect the long-wavelength wave
propagation and its interaction with the larger domain. The present paper
introduces a new multi-level hybrid algorithm to address these types of
phenomena. In this new approach, the fully compressible Euler equations are
solved on the entire domain, potentially with local refinement, while their
low-Mach-number counterparts are solved on subregions of the domain with higher
spatial resolution. The finest of the compressible levels communicates
inhomogeneous divergence constraints to the coarsest of the low-Mach-number
levels, allowing the low-Mach-number levels to retain the long-wavelength
acoustics. The performance of the hybrid method is shown for a series of test
cases, including results from a simulation of the aeroacoustic propagation
generated from a Kelvin-Helmholtz instability in low-Mach-number mixing layers.
It is demonstrated that compared to a purely compressible approach, the hybrid
method allows time-steps two orders of magnitude larger at the finest level,
leading to an overall reduction of the computational time by a factor of 8
Analysis of the presynaptic signaling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein
No abstract
The role of human resources on the economy: a study of the Balkan eu member states
In this paper we analyze the impact of the quality of human capital on the main economic indicators of South-Eastern Europe countries [SEE] at the NUTS 2 level. The subjects of this research are the human capital indicators of regional competitiveness. The quality of human capital depends largely on the age structure of the population and the quality of education. Those regions, which have the highest percentage of the working-age population and highly educated people, are able to achieve higher productivity and gain a competitive advantage over other regions. As main indicators of the quality of human capital we identified: population; persons aged 25-64 with tertiary education attainment; students in tertiary education and participation of adults aged 25-64 in education and training and human resources in science and technology. As main economic indicators, we identified: regional gross domestic product; employment and income of households. The aim of this paper is to determine whether there is a correlation between the indicators of the quality of human capital and economic indicators. As a main methodology we have used the correlation coefficient which shows interdependence of the analyzed indicators. As part of our analysis, we consider only EU member states that belong to the SEE countries: Slovenia, Croatia, Romania, Bulgaria and Greece. We conclude that in all countries there is a high multiple correlation coefficient between the indicators human resources in science and technology, number of students and employment.This paper is the result of the project No. 47007 III funded by the Ministry for Education, Science and Technological Development of Republic of Serbia
- …
