8,947 research outputs found
Anisotropic Electron Spin Lifetime in (In,Ga)As/GaAs (110) Quantum Wells
Anisotropic electron spin lifetimes in strained undoped (In,Ga)As/GaAs (110)
quantum wells of different width and height are investigated by time-resolved
Faraday rotation and time-resolved transmission and are compared to the
(001)-orientation. From the suppression of spin precession, the ratio of
in-plane to out-of-plane spin lifetimes is calculated. Whereas the ratio
increases with In concentration in agreement with theory, a surprisingly high
anisotropy of 480 is observed for the broadest quantum well, when expressed in
terms of spin relaxation times.Comment: 4 pages, 4 figures, revise
Parsimonious Kernel Fisher Discrimination
By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases
Dynamic quantum clustering: a method for visual exploration of structures in data
A given set of data-points in some feature space may be associated with a
Schrodinger equation whose potential is determined by the data. This is known
to lead to good clustering solutions. Here we extend this approach into a
full-fledged dynamical scheme using a time-dependent Schrodinger equation.
Moreover, we approximate this Hamiltonian formalism by a truncated calculation
within a set of Gaussian wave functions (coherent states) centered around the
original points. This allows for analytic evaluation of the time evolution of
all such states, opening up the possibility of exploration of relationships
among data-points through observation of varying dynamical-distances among
points and convergence of points into clusters. This formalism may be further
supplemented by preprocessing, such as dimensional reduction through singular
value decomposition or feature filtering.Comment: 15 pages, 9 figure
Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification
The majority of speech signal analysis procedures for automatic detection of laryngeal pathologies mainly rely on parameters extracted from time domain processing. Moreover, calculation of these parameters often requires prior pitch period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this paper, an alternative approach based on cepstral- domain processing is presented which has the advantage of not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has an easier physical interpretation while achieving similar performance standards
Phase transitions in optimal unsupervised learning
We determine the optimal performance of learning the orientation of the
symmetry axis of a set of P = alpha N points that are uniformly distributed in
all the directions but one on the N-dimensional sphere. The components along
the symmetry breaking direction, of unitary vector B, are sampled from a
mixture of two gaussians of variable separation and width. The typical optimal
performance is measured through the overlap Ropt=B.J* where J* is the optimal
guess of the symmetry breaking direction. Within this general scenario, the
learning curves Ropt(alpha) may present first order transitions if the clusters
are narrow enough. Close to these transitions, high performance states can be
obtained through the minimization of the corresponding optimal potential,
although these solutions are metastable, and therefore not learnable, within
the usual bayesian scenario.Comment: 9 pages, 8 figures, submitted to PRE, This new version of the paper
contains one new section, Bayesian versus optimal solutions, where we explain
in detail the results supporting our claim that bayesian learning may not be
optimal. Figures 4 of the first submission was difficult to understand. We
replaced it by two new figures (Figs. 4 and 5 in this new version) containing
more detail
Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy
In this paper we present a simple and robust method for self-correction of
camera distortion using single images of scenes which contain straight lines.
Since the most common distortion can be modelled as radial distortion, we
illustrate the method using the Harris radial distortion model, but the method
is applicable to any distortion model. The method is based on transforming the
edgels of the distorted image to a 1-D angular Hough space, and optimizing the
distortion correction parameters which minimize the entropy of the
corresponding normalized histogram. Properly corrected imagery will have fewer
curved lines, and therefore less spread in Hough space. Since the method does
not rely on any image structure beyond the existence of edgels sharing some
common orientations and does not use edge fitting, it is applicable to a wide
variety of image types. For instance, it can be applied equally well to images
of texture with weak but dominant orientations, or images with strong vanishing
points. Finally, the method is performed on both synthetic and real data
revealing that it is particularly robust to noise.Comment: 9 pages, 5 figures Corrected errors in equation 1
Fractal Descriptors in the Fourier Domain Applied to Color Texture Analysis
The present work proposes the development of a novel method to provide
descriptors for colored texture images. The method consists in two steps. In
the first, we apply a linear transform in the color space of the image aiming
at highlighting spatial structuring relations among the color of pixels. In a
second moment, we apply a multiscale approach to the calculus of fractal
dimension based on Fourier transform. From this multiscale operation, we
extract the descriptors used to discriminate the texture represented in digital
images. The accuracy of the method is verified in the classification of two
color texture datasets, by comparing the performance of the proposed technique
to other classical and state-of-the-art methods for color texture analysis. The
results showed an advantage of almost 3% of the proposed technique over the
second best approach.Comment: Chaos, Volume 21, Issue 4, 201
Experimental analysis of sample-based maps for long-term SLAM
This paper presents a system for long-term SLAM (simultaneous localization and mapping) by mobile service robots and its experimental evaluation in a real dynamic environment. To deal with the stability-plasticity dilemma (the trade-off between adaptation to new patterns and preservation of old patterns), the environment is represented at multiple timescales simultaneously (5 in our experiments). A sample-based representation is
proposed, where older memories fade at different rates depending on the timescale, and robust statistics are used to interpret the samples. The dynamics of this representation are analysed in a five week experiment, measuring the relative influence of short- and long-term memories over time, and further demonstrating the robustness of the approach
- …
