6,322 research outputs found
Mars resources
The most important resources of Mars for the early exploration phase will be oxygen and water, derived from the Martian atmosphere and regolith, which will be used for propellant and life support. Rocks and soils may be used in unprocessed form as shielding materials for habitats, or in minimally processed form to expand habitable living and work space. Resources necessary to conduct manufacturing and agricultural projects are potentially available, but will await advanced stages of Mars habitation before they are utilized
Lunar exploration for resource utilization
The strategy for developing resources on the Moon depends on the stage of space industrialization. A case is made for first developing the resources needed to provide simple materials required in large quantities for space operations. Propellants, shielding, and structural materials fall into this category. As the enterprise grows, it will be feasible to develop additional sources - those more difficult to obtain or required in smaller quantities. Thus, the first materials processing on the Moon will probably take the abundant lunar regolith, extract from it major mineral or glass species, and do relatively simple chemical processing. We need to conduct a lunar remote sensing mission to determine the global distribution of features, geophysical properties, and composition of the Moon, information which will serve as the basis for detailed models of and engineering decisions about a lunar mine
Application of manufactured products
A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems
The 1984 NASA/ASEE summer faculty fellowship program
An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy
Configurations of Extremal Even Unimodular Lattices
We extend the results of Ozeki on the configurations of extremal even
unimodular lattices. Specifically, we show that if L is such a lattice of rank
56, 72, or 96, then L is generated by its minimal-norm vectors.Comment: 8 pages. To appear, International Journal of Number Theor
Manufacturing and fabrication, part 3
The accessibility of material and energy off the Earth and the leverage that these nonterrestrial resources can exert on the space transportation system are important influences on the long-term goal of exploring the solar system. Research on separation of lunar materials and manufacturing of useful products from them is in its infancy. A few possible processes and products are described in this report. Specific attention is given to oxygen, metal, and silicate products
Space resources. Volume 4: Social concerns
Space resources must be used to support life on the Moon and exploration of Mars. This volume, Social Concerns, covers some of the most important issues which must be addressed in any major program for the human exploration of space. The volume begins with a consideration of the economics and management of large scale space activities. Then the legal aspects of these activities are discussed, particularly the interpretation of treaty law with respect to the Moon and asteroids. The social and cultural issues of moving people into space are considered in detail, and the eventual emergence of a space culture different from the existing culture is envisioned. The environmental issues raised by the development of space settlements are faced. Some innovative approaches are proposed to space communities and habitats and self-sufficiency is considered along with human safety at a lunar base or outpost
Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft
This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results
Space resources. Volume 1: Scenarios
A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study
- …
