103 research outputs found
Levy--Brownian motion on finite intervals: Mean first passage time analysis
We present the analysis of the first passage time problem on a finite
interval for the generalized Wiener process that is driven by L\'evy stable
noises. The complexity of the first passage time statistics (mean first passage
time, cumulative first passage time distribution) is elucidated together with a
discussion of the proper setup of corresponding boundary conditions that
correctly yield the statistics of first passages for these non-Gaussian noises.
The validity of the method is tested numerically and compared against
analytical formulae when the stability index approaches 2, recovering
in this limit the standard results for the Fokker-Planck dynamics driven by
Gaussian white noise.Comment: 9 pages, 13 figure
Transport in a Levy ratchet: Group velocity and distribution spread
We consider the motion of an overdamped particle in a periodic potential
lacking spatial symmetry under the influence of symmetric L\'evy noise, being a
minimal setup for a ``L\'evy ratchet.'' Due to the non-thermal character of the
L\'evy noise, the particle exhibits a motion with a preferred direction even in
the absence of whatever additional time-dependent forces. The examination of
the L\'evy ratchet has to be based on the characteristics of directionality
which are different from typically used measures like mean current and the
dispersion of particles' positions, since these get inappropriate when the
moments of the noise diverge. To overcome this problem, we discuss robust
measures of directionality of transport like the position of the median of the
particles displacements' distribution characterizing the group velocity, and
the interquantile distance giving the measure of the distributions' width.
Moreover, we analyze the behavior of splitting probabilities for leaving an
interval of a given length unveiling qualitative differences between the noises
with L\'evy indices below and above unity. Finally, we inspect the problem of
the first escape from an interval of given length revealing independence of
exit times on the structure of the potential.Comment: 9 pages, 12 figure
Anomalous diffusion and generalized Sparre-Andersen scaling
We are discussing long-time, scaling limit for the anomalous diffusion
composed of the subordinated L\'evy-Wiener process. The limiting anomalous
diffusion is in general non-Markov, even in the regime, where ensemble averages
of a mean-square displacement or quantiles representing the group spread of the
distribution follow the scaling characteristic for an ordinary stochastic
diffusion. To discriminate between truly memory-less process and the non-Markov
one, we are analyzing deviation of the survival probability from the (standard)
Sparre-Andersen scaling.Comment: 5 pages, 3 figure
Economic and social factors in designing disease control strategies for epidemics on networks
Models for control of epidemics on local, global and small-world networks are
considered, with only partial information accessible about the status of
individuals and their connections. The main goal of an effective control
measure is to stop the epidemic at a lowest possible cost, including treatment
and cost necessary to track the disease spread. We show that delay in detection
of infectious individuals and presence of long-range links are the most
important factors determining the cost. However, the details of long-range
links are usually the least-known element of the social interactions due to
their occasional character and potentially short life-span. We show that under
some conditions on the probability of disease spread, it is advisable to
attempt to track those links. Thus, collecting some additional knowledge about
the network structure might be beneficial to ensure a successful and
cost-effective control.Comment: To be published in Acta Phys. Pol.
Stationary states in Langevin dynamics under asymmetric L\'evy noises
Properties of systems driven by white non-Gaussian noises can be very
different from these systems driven by the white Gaussian noise. We investigate
stationary probability densities for systems driven by -stable L\'evy
type noises, which provide natural extension to the Gaussian noise having
however a new property mainly a possibility of being asymmetric. Stationary
probability densities are examined for a particle moving in parabolic, quartic
and in generic double well potential models subjected to the action of
-stable noises. Relevant solutions are constructed by methods of
stochastic dynamics. In situations where analytical results are known they are
compared with numerical results. Furthermore, the problem of estimation of the
parameters of stationary densities is investigated.Comment: 9 pages, 9 figures, 3 table
Bimodality and hysteresis in systems driven by confined L\'evy flights
We demonstrate occurrence of bimodality and dynamical hysteresis in a system
describing an overdamped quartic oscillator perturbed by additive white and
asymmetric L\'evy noise. Investigated estimators of the stationary probability
density profiles display not only a turnover from unimodal to bimodal character
but also a change in a relative stability of stationary states that depends on
the asymmetry parameter of the underlying noise term. When varying the
asymmetry parameter cyclically, the system exhibits a hysteresis in the
occupation of a chosen stationary state.Comment: 4 pages, 5 figures, 30 reference
Levy stable noise induced transitions: stochastic resonance, resonant activation and dynamic hysteresis
A standard approach to analysis of noise-induced effects in stochastic
dynamics assumes a Gaussian character of the noise term describing interaction
of the analyzed system with its complex surroundings. An additional assumption
about the existence of timescale separation between the dynamics of the
measured observable and the typical timescale of the noise allows external
fluctuations to be modeled as temporally uncorrelated and therefore white.
However, in many natural phenomena the assumptions concerning the
abovementioned properties of "Gaussianity" and "whiteness" of the noise can be
violated. In this context, in contrast to the spatiotemporal coupling
characterizing general forms of non-Markovian or semi-Markovian L\'evy walks,
so called L\'evy flights correspond to the class of Markov processes which
still can be interpreted as white, but distributed according to a more general,
infinitely divisible, stable and non-Gaussian law. L\'evy noise-driven
non-equilibrium systems are known to manifest interesting physical properties
and have been addressed in various scenarios of physical transport exhibiting a
superdiffusive behavior. Here we present a brief overview of our recent
investigations aimed to understand features of stochastic dynamics under the
influence of L\'evy white noise perturbations. We find that the archetypal
phenomena of noise-induced ordering are robust and can be detected also in
systems driven by non-Gaussian, heavy-tailed fluctuations with infinite
variance.Comment: 7 pages, 8 figure
Statistics of non-linear stochastic dynamical systems under L\'evy noises by a convolution quadrature approach
This paper describes a novel numerical approach to find the statistics of the
non-stationary response of scalar non-linear systems excited by L\'evy white
noises. The proposed numerical procedure relies on the introduction of an
integral transform of Wiener-Hopf type into the equation governing the
characteristic function. Once this equation is rewritten as partial
integro-differential equation, it is then solved by applying the method of
convolution quadrature originally proposed by Lubich, here extended to deal
with this particular integral transform. The proposed approach is relevant for
two reasons: 1) Statistics of systems with several different drift terms can be
handled in an efficient way, independently from the kind of white noise; 2) The
particular form of Wiener-Hopf integral transform and its numerical evaluation,
both introduced in this study, are generalizations of fractional
integro-differential operators of potential type and Gr\"unwald-Letnikov
fractional derivatives, respectively.Comment: 20 pages, 5 figure
Shift of percolation thresholds for epidemic spread between static and dynamic small-world networks
The aim of the study was to compare the epidemic spread on static and dynamic
small-world networks. The network was constructed as a 2-dimensional
Watts-Strogatz model (500x500 square lattice with additional shortcuts), and
the dynamics involved rewiring shortcuts in every time step of the epidemic
spread. The model of the epidemic is SIR with latency time of 3 time steps. The
behaviour of the epidemic was checked over the range of shortcut probability
per underlying bond 0-0.5. The quantity of interest was percolation threshold
for the epidemic spread, for which numerical results were checked against an
approximate analytical model. We find a significant lowering of percolation
thresholds for the dynamic network in the parameter range given. The result
shows that the behaviour of the epidemic on dynamic network is that of a static
small world with the number of shortcuts increased by 20.7 +/- 1.4%, while the
overall qualitative behaviour stays the same. We derive corrections to the
analytical model which account for the effect. For both dynamic and static
small-world we observe suppression of the average epidemic size dependence on
network size in comparison with finite-size scaling known for regular lattice.
We also study the effect of dynamics for several rewiring rates relative to
latency time of the disease.Comment: 13 pages, 6 figure
Influence of the Barrier Shape on Resonant Activation
The escape of a Brownian particle over a dichotomously fluctuating barrier is
investigated for various shapes of the barrier. The problem of resonant
activation is revisited with the attention on the effect of the barrier shape
on optimal value of the mean escape time in the system. The characteristic
features of resonant behavior are analyzed for barriers switching either
between different heights, or "on" and "off" positions. PACS number(s):
05.10-a, 02.50.-r, 82.20.-wj.Comment: 7 pages, 8 figures, RevTex4. Manuscript has been revised and
enhanced. Pictures have been made more clear and some of them have been
cancelled. Additional references have been added. The paper has been
submitted to Phys. Rev.
- …
