1,798,859 research outputs found

    Entropy-Enthalpy Compensation May Be a Useful Interpretation Tool for Complex Systems Like Protein-DNA Complexes: An Appeal to Experimentalists

    Full text link
    In various chemical systems enthalpy-entropy compensation (EEC) is a well-known rule of behavior, although the physical roots of it are still not completely understood. It has been frequently questioned whether EEC is a truly physical phenomenon or a coincidence due to trivial mathematical connections between statistical-mechanical parameters - or even simpler: A phantom effect resulting from the misinterpretation of experimental data. Here, we review EEC from a new standpoint using the notion of correlation which is essential for the method of factor analysis, but is not conventional in physics and chemistry. We conclude that the EEC may be rationalized in terms of hidden (not directly measurable with the help of the current experimental set-up) but physically real factors, implying a Carnot-cycle model in which a micro-phase transition (MPT) plays a crucial role. Examples of such MPTs underlying physically valid EEC should be typically cooperative processes in supramolecular aggregates, like changes of structured water at hydrophobic surfaces, conformational transitions upon ligand-biopolymer binding, and so on, so forth. The MPT notion could help rationalize the occurrence of EEC in connection with hydration and folding of proteins,enzymatic reactions, functioning of molecular motors, DNA de- and rehybridization, as well as similar phenomena.Comment: 8 pages, 2 Figures, Submitted for publicatio

    Variational Formulation of Macro-Particle Models for Electromagnetic Plasma Simulations

    Get PDF
    A variational method is used to derive a self-consistent macro-particle model for relativistic electromagnetic kinetic plasma simulations. Extending earlier work [E. G. Evstatiev and B. A. Shadwick, J. Comput. Phys., vol. 245, pp. 376-398, 2013], the discretization of the electromagnetic Low Lagrangian is performed via a reduction of the phase-space distribution function onto a collection of finite-sized macro-particles of arbitrary shape and discretization of field quantities onto a spatial grid. This approach may be used with both lab frame coordinates or moving window coordinates; the latter can greatly improve computational efficiency for studying some types of laser-plasma interactions. The primary advantage of the variational approach is the preservation of Lagrangian symmetries, which in our case leads to energy conservation and thus avoids difficulties with grid heating. Additionally, this approach decouples particle size from grid spacing and relaxes restrictions on particle shape, leading to low numerical noise. The variational approach also guarantees consistent approximations in the equations of motion and is amenable to higher order methods in both space and time. We restrict our attention to the 1-1/2 dimensional case (one coordinate and two momenta). Simulations are performed with the new models and demonstrate energy conservation and low noise.Comment: IEEE Transaction on Plasma Science (TPS) Special Issue: Plenary and Invited Papers of the Pulsed Power and Plasma Science Conference (PPPS 2013

    Motion of vortices in ferromagnetic spin-1 BEC

    Get PDF
    The paper investigates dynamics of nonsingular vortices in a ferromagnetic spin-1 BEC, where spin and mass superfluidity coexist in the presence of uniaxial anisotropy (linear and quadratic Zeeman effect). The analysis is based on hydrodynamics following from the Gross-Pitaevskii theory. Cores of nonsingular vortices are skyrmions with charge, which is tuned by uniaxial anisotropy and can have any fractal value between 0 and 1. There are circulations of mass and spin currents around these vortices. The results are compared with the equation of vortex motion derived earlier in the Landau-Lifshitz-Gilbert theory for magnetic vortices in easy-plane ferromagnetic insulators. In the both cases the transverse gyrotropic force (analog of the Magnus force in superfluid and classical hydrodynamics) is proportional to the charge of skyrmions in vortex cores.Comment: 19 pages, 2 figures, to be published in the special issue of Fizika Nizkikh Temperatur dedicated to A.M.Kosevich. arXiv admin note: substantial text overlap with arXiv:1801.0109

    Comparison of Field Theory Models of Interest Rates with Market Data

    Full text link
    We calibrate and test various variants of field theory models of the interest rate with data from eurodollars futures. A model based on a simple psychological factor are seen to provide the best fit to the market. We make a model independent determination of the volatility function of the forward rates from market data.Comment: 9 figure

    Elucidating the Correlation of the Quasar \ion{Fe}{2}/\ion{Mg}{2} Ratio with Redshift

    Full text link
    Interpretation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios from quasars has a major cosmological motivation. Both Fe and Mg are produced by short-lived massive stars. In addition, Fe is produced by accreting white dwarf supernovae somewhat after star formation begins. Therefore, we expect that the Fe/Mg ratio will gradually decrease with redshift. We have used data from the Sloan Digital Sky Survey to explore the dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio on redshift and on luminosity in the redshift range of 0.75<z<2.200.75< z< 2.20, and we have used predictions from our 830-level model for the \ion{Fe}{2} atom in photoionization calculations to interpret our findings. We have split the quasars into several groups based upon the value of their \ion{Fe}{2}(UV)/\ion{Mg}{2} emission ratios, and then checked to see how the fraction of quasars in each group varies with the increase of redshift. We next examined the luminosity dependence of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio, and we found that beyond a threshold of \ion{Fe}{2}(UV)/\ion{Mg}{2} =~ 5, and M2500<25magM_{2500} < -25\rm mag, the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio increases with luminosity, as predicted by our model. We interpret our observed variation of the \ion{Fe}{2}(UV)/\ion{Mg}{2} ratio with redshift as a result of the correlation of redshift with luminosity in a magnitude limited quasar sample.Comment: ApJL accepte

    Pipelike current-carrying vortices in two-component condensates

    Full text link
    We study straight vortices with global longitudinal currents in the Bogomol'ny limit of the Abelian Higgs model with two charged scalar fields. The model possesses global SU(2) and local electromagnetic U(1) symmetries spontaneously broken to global U(1) group, and corresponds to a semilocal limit of the standard electroweak model. We show that the contribution of the global SU(2) current to the vortex energy is proportional to the total current squared. Locally, these vortices carry also longitudinal electromagnetic currents, while the total electromagnetic current flowing through a transverse section of the vortex is always zero. The vortices with high winding numbers have, in general, a nested pipelike structure. The magnetic field of the vortex is concentrated at a certain distance from the geometric center of the vortex, thus resembling a "pipe." This magnetic pipe is layered between two electrically charged pipes that carry longitudinal electric currents in opposite directions.Comment: 11 pages, 14 figures, RevTeX 4.1; v2: references added, minor changes, Figure 8 (a visualization of the nested structure of the pipelike vortex) is replaced, published versio

    Strings in Yang-Mills-Higgs theory coupled to gravity

    Full text link
    Non-Abelian strings for an Einstein-Yang-Mills-Higgs theory are explicitly constructed. We consider N_f Higgs fields in the fundamental representation of the U(1)xSU(N_c) gauge group in order to have a color-flavor SU(N_c) group remaining unbroken. Choosing a suitable ansatz for the metric, Bogomol'nyi-like first order equations are found and rotationally symmetric solutions are proposed. In the N_f = N_c case, solutions are local strings and are shown to be truly non-Abelian by parameterizing them in terms of orientational collective coordinates. When N_f > N_c, the solutions correspond to semilocal strings which, beside the orientational degrees of freedom, acquire additional collective coordinates parameterizing their transverse size. The low-energy effective theories for the correspondent moduli are found, showing that all zero modes are normalizable in presence of gravity, even in the semilocal case.Comment: 20 pages, no figure, modified version with new title, abstract and an additional section completing the study of effective theories. Physical Review D in pres

    Rank-frequency relation for Chinese characters

    Full text link
    We show that the Zipf's law for Chinese characters perfectly holds for sufficiently short texts (few thousand different characters). The scenario of its validity is similar to the Zipf's law for words in short English texts. For long Chinese texts (or for mixtures of short Chinese texts), rank-frequency relations for Chinese characters display a two-layer, hierarchic structure that combines a Zipfian power-law regime for frequent characters (first layer) with an exponential-like regime for less frequent characters (second layer). For these two layers we provide different (though related) theoretical descriptions that include the range of low-frequency characters (hapax legomena). The comparative analysis of rank-frequency relations for Chinese characters versus English words illustrates the extent to which the characters play for Chinese writers the same role as the words for those writing within alphabetical systems.Comment: To appear in European Physical Journal B (EPJ B), 2014 (22 pages, 7 figures

    g-function in perturbation theory

    Full text link
    We present some explicit computations checking a particular form of gradient formula for a boundary beta function in two-dimensional quantum field theory on a disc. The form of the potential function and metric that we consider were introduced in hep-th/9210065, hep-th/9311177 in the context of background independent open string field theory. We check the gradient formula to the third order in perturbation theory around a fixed point. Special consideration is given to situations when resonant terms are present exhibiting logarithmic divergences and universal nonlinearities in beta functions. The gradient formula is found to work to the given order.Comment: 1+14 pages, Latex; v.2: typos corrected; v.3: minor corrections, to appear in IJM
    corecore