1,395 research outputs found
A Model for the Voltage Steps in the Breakdown of the Integer Quantum Hall Effect
In samples used to maintain the US resistance standard the breakdown of the
dissipationless integer quantum Hall effect occurs as a series of dissipative
voltage steps. A mechanism for this type of breakdown is proposed, based on the
generation of magneto-excitons when the quantum Hall fluid flows past an
ionised impurity above a critical velocity. The calculated generation rate
gives a voltage step height in good agreement with measurements on both
electron and hole gases. We also compare this model to a hydrodynamic
description of breakdown.Comment: 4 pages including 3 figure
Anisotropy in nanocellular polymers promoted by the addition of needle‐like sepiolites
This work presents a new strategy for obtaining nanocellular materials with high anisotropy ratios by means of the addition of needle‐like nanoparticles. Nanocellular polymers are of great interest due to their outstanding properties, whereas anisotropic structures allow the realization of improved thermal and mechanical properties in certain directions. Nanocomposites based on poly(methyl methacrylate) (PMMA) with nanometric sepiolites are generated by extrusion. From the extruded filaments, cellular materials are produced using a two‐step gas dissolution foaming method. The effect of adding various types and contents of sepiolites is investigated. As a result of the extrusion process, the needle‐like sepiolites are aligned in the machine direction in the solid nanocomposites. Regarding the cellular materials, the addition of sepiolites allows one to obtain anisotropic nanocellular polymers with cell sizes of 150 to 420 nm and cell nucleation densities of 1013–1014 nuclei cm−3 and presenting anisotropy ratios ranging from 1.38 to 2.15, the extrusion direction being the direction of the anisotropy. To explain the appearance of anisotropy, a mechanism based on cell coalescence is proposed and discussed. In addition, it is shown that it is possible to control the anisotropy ratio of the PMMA/sepiolite nanocellular polymers by changing the amount of well‐dispersed sepiolites in the solid nanocomposites
Validation of magnetophonon spectroscopy as a tool for analyzing hot-electron effects in devices
It is shown that very high precision hot-electron magnetophonon experiments made on n+n−n+-GaAs sandwich device structures which are customized for magnetoresistance measurements can be very accurately modeled by a new Monte Carlo technique. The latter takes account of the Landau quantization and device architecture as well as material parameters. It is proposed that this combination of experiment and modeling yields a quantitative tool for the direct analysis of spatially localized very nonequilibrium electron distributions in small devices and low dimensional structures
Microscopic analysis of the valence band and impurity band theories of (Ga,Mn)As
We analyze microscopically the valence and impurity band models of
ferromagnetic (Ga,Mn)As. We find that the tight-binding Anderson approach with
conventional parameterization and the full potential LDA+U calculations give a
very similar picture of states near the Fermi energy which reside in an
exchange-split sp-d hybridized valence band with dominant orbital character of
the host semiconductor; this microscopic spectral character is consistent with
the physical premise of the k.p kinetic-exchange model. On the other hand, the
various models with a band structure comprising an impurity band detached from
the valence band assume mutually incompatible microscopic spectral character.
By adapting the tight-binding Anderson calculations individually to each of the
impurity band pictures in the single Mn impurity limit and then by exploring
the entire doping range we find that a detached impurity band does not persist
in any of these models in ferromagnetic (Ga,Mn)As.Comment: 29 pages, 25 figure
Dynamic instabilities in resonant tunneling induced by a magnetic field
We show that the addition of a magnetic field parallel to the current induces
self sustained intrinsic current oscillations in an asymmetric double barrier
structure. The oscillations are attributed to the nonlinear dynamic coupling of
the current to the charge trapped in the well, and the effect of the external
field over the local density of states across the system. Our results show that
the system bifurcates as the field is increased, and may transit to chaos at
large enough fields.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Letter
Study of Forces During Ultrasonic Vibration Assisted Grinding
AbstractRadial and tangential grinding forces were presented as four components connected with workpiece material microcutting and plastic deformation, and friction of cutting and abrasive grains (AGs) with the workpiece.The depth of abrasive grain penetration in the workpiece and the cutting width are determined with regard to ultrasonic vibrations (USV) amplitude and frequency. Summing up of the forces from single grains was conducted by using a multiple integral, provided that one of the integration limits is a function describing change of the depth of the AGs penetration in the workpiece material which depends on the USV parameters. Dependencies were obtained for calculation of all grinding force components at different vibration amplitudes and frequencies when various number of USV waves fits the contact arc of the grain and the workpiece.Experimental values of grinding forces turned out to be 10 – 15% lower than those when USV waves are not applied
Heating process in the pre-Breakdown regime of the Quantum Hall Efect : a size dependent effect
Our study presents experimental measurements of the contact and longitudinal
voltage drops in Hall bars, as a function of the current amplitude. We are
interested in the heating phenomenon which takes place before the breakdown of
the quantum Hall effect, i.e. the pre-breakdown regime. Two types of samples
has been investigated, at low temperature (4.2 and 1.5K) and high magnetic
field (up to 13 T). The Hall bars have several different widths, and our
observations clearly demonstrate that the size of the sample influences the
heating phenomenon. By measuring the critical currents of both contact and
longitudinal voltages, as a function of the filling factor (around ), we
highlight the presence of a high electric field domain near the source contact,
which is observable only in samples whose width is smaller than 400 microns.Comment: 4 pages, 5 igures, 7th International Symposium of Research in High
Magnetic Fields, to be published in physica
Electric field inversion asymmetry: Rashba and Stark effects for holes in resonant tunneling devices
We report experimental evidence of excitonic spin-splitting, in addition to
the conventional Zeeman effect, produced by a combination of the Rashba
spin-orbit interaction, Stark shift and charge screening. The
electric-field-induced modulation of the spin-splitting are studied during the
charging and discharging processes of p-type GaAs/AlAs double barrier resonant
tunneling diodes (RTD) under applied bias and magnetic field. The abrupt
changes in the photoluminescence, with the applied bias, provide information of
the charge accumulation effects on the device.Comment: 4 pages, 2 figure
Strong, Ultra-narrow Peaks of Longitudinal and Hall Resistances in the Regime of Breakdown of the Quantum Hall Effect
With unusually slow and high-resolution sweeps of magnetic field, strong,
ultra-narrow (width down to ) resistance peaks are observed in
the regime of breakdown of the quantum Hall effect. The peaks are dependent on
the directions and even the history of magnetic field sweeps, indicating the
involvement of a very slow physical process. Such a process and the sharp peaks
are, however, not predicted by existing theories. We also find a clear
connection between the resistance peaks and nuclear spin polarization.Comment: 5 pages with 3 figures. To appear in PR
- …
