2,844 research outputs found

    Temperature Profiles in Hamiltonian Heat Conduction

    Full text link
    We study heat transport in the context of Hamiltonian and related stochastic models with nearest-neighbor coupling, and derive a universal law for the temperature profiles of a large class of such models. This law contains a parameter α\alpha, and is linear only when α=1\alpha=1. The value of α\alpha depends on energy-exchange mechanisms, including the range of motion of tracer particles and their times of flight.Comment: Revised text, same results Second revisio

    The p-periodicity of the groups GL (n, Os(K)) and SL(n, Os(K))

    Get PDF
    In this paper we investigate the p-periodicity of the S-arithmetic groups G = GL(n, Os(K)) and G1 = SL(n, Os(K)) where Os(K) is the ring of S-integers of a number field K (cf. [12, 13]; S is a finite set of places in K including the infinite places). These groups are known to be virtually of finite (cohomological) dimension, and thus the concept of p-periodicity is defined; it refers to a rational prime p and to the p-primary component Ĥi(G, A, p) of the Farrell-Tate cohomology Ĥi(G, A) with respect to an arbitrary G-module A. We recall that Ĥi coincides with the usual cohomology Hi for all i above the virtual dimension of G, and that in the case of a finite group (i.e., a group of virtual dimension zero) the Ĥi, i , are the usual Tate cohomology groups. The group G is called p-periodic if Ĥi(G, A, p) is periodic in i, for all A, and the smallest corresponding period is then simply called the p-period of G. If G has no p-torsion, the p-primary component of all its Ĥi is 0, and thus G is trivially p-periodi

    How to avoid potential pitfalls in recurrence plot based data analysis

    Full text link
    Recurrence plots and recurrence quantification analysis have become popular in the last two decades. Recurrence based methods have on the one hand a deep foundation in the theory of dynamical systems and are on the other hand powerful tools for the investigation of a variety of problems. The increasing interest encompasses the growing risk of misuse and uncritical application of these methods. Therefore, we point out potential problems and pitfalls related to different aspects of the application of recurrence plots and recurrence quantification analysis

    Remarks on Bootstrap Percolation in Metric Networks

    Full text link
    We examine bootstrap percolation in d-dimensional, directed metric graphs in the context of recent measurements of firing dynamics in 2D neuronal cultures. There are two regimes, depending on the graph size N. Large metric graphs are ignited by the occurrence of critical nuclei, which initially occupy an infinitesimal fraction, f_* -> 0, of the graph and then explode throughout a finite fraction. Smaller metric graphs are effectively random in the sense that their ignition requires the initial ignition of a finite, unlocalized fraction of the graph, f_* >0. The crossover between the two regimes is at a size N_* which scales exponentially with the connectivity range \lambda like_* \sim \exp\lambda^d. The neuronal cultures are finite metric graphs of size N \simeq 10^5-10^6, which, for the parameters of the experiment, is effectively random since N<< N_*. This explains the seeming contradiction in the observed finite f_* in these cultures. Finally, we discuss the dynamics of the firing front

    On Turing dynamical systems and the Atiyah problem

    Full text link
    Main theorems of the article concern the problem of M. Atiyah on possible values of l^2-Betti numbers. It is shown that all non-negative real numbers are l^2-Betti numbers, and that "many" (for example all non-negative algebraic) real numbers are l^2-Betti numbers of simply connected manifolds with respect to a free cocompact action. Also an explicit example is constructed which leads to a simply connected manifold with a transcendental l^2-Betti number with respect to an action of the threefold direct product of the lamplighter group Z/2 wr Z. The main new idea is embedding Turing machines into integral group rings. The main tool developed generalizes known techniques of spectral computations for certain random walk operators to arbitrary operators in groupoid rings of discrete measured groupoids.Comment: 35 pages; essentially identical to the published versio

    Modularity and Optimality in Social Choice

    Get PDF
    Marengo and the second author have developed in the last years a geometric model of social choice when this takes place among bundles of interdependent elements, showing that by bundling and unbundling the same set of constituent elements an authority has the power of determining the social outcome. In this paper we will tie the model above to tournament theory, solving some of the mathematical problems arising in their work and opening new questions which are interesting not only from a mathematical and a social choice point of view, but also from an economic and a genetic one. In particular, we will introduce the notion of u-local optima and we will study it from both a theoretical and a numerical/probabilistic point of view; we will also describe an algorithm that computes the universal basin of attraction of a social outcome in O(M^3 logM) time (where M is the number of social outcomes).Comment: 42 pages, 4 figures, 8 tables, 1 algorithm

    Topological aggregation, the twin paradox and the No Show paradox

    Get PDF
    International audienceConsider the framework of topological aggregation introduced by Chichilnisky (1980). We prove that in this framework the Twin Paradox and the No Show Paradox cannot be avoided. Anonymity and unanimity are not needed to obtain these results

    Lyapunov exponents and transport in the Zhang model of Self-Organized Criticality

    Full text link
    We discuss the role played by the Lyapunov exponents in the dynamics of Zhang's model of Self-Organized Criticality. We show that a large part of the spectrum (slowest modes) is associated with the energy transpor in the lattice. In particular, we give bounds on the first negative Lyapunov exponent in terms of the energy flux dissipated at the boundaries per unit of time. We then establish an explicit formula for the transport modes that appear as diffusion modes in a landscape where the metric is given by the density of active sites. We use a finite size scaling ansatz for the Lyapunov spectrum and relate the scaling exponent to the scaling of quantities like avalanche size, duration, density of active sites, etc ...Comment: 33 pages, 6 figures, 1 table (to appear
    corecore