588 research outputs found
Universal linear relations between susceptibility and Tc in cuprates
We developed an experimental method for measuring the intrinsic
susceptibility \chi of powder of cuprate superconductors in the zero field
limit using a DC-magnetometer. The method is tested with lead spheres. Using
this method we determine \chi for a number of cuprate families as a function of
doping. A universal linear (and not proportionality) relation between Tc and
\chi is found. We suggest possible explanations for this phenomenon.Comment: Accepted for publication in PR
The Effect of Splayed Pins on Vortex Creep and Critical Currents
We study the effects of splayed columnar pins on the vortex motion using
realistic London Langevin simulations. At low currents vortex creep is strongly
suppressed, whereas the critical current j_c is enhanced only moderately.
Splaying the pins generates an increasing energy barrier against vortex
hopping, and leads to the forced entanglement of vortices, both of which
suppress creep efficiently. On the other hand splaying enhances kink nucleation
and introduces intersecting pins, which cut off the energy barriers. Thus the
j_c enhancement is strongly parameter sensitive. We also characterize the angle
dependence of j_c, and the effect of different splaying geometries.Comment: 4 figure
Stable ultrahigh-density magneto-optical recordings using introduced linear defects
The stability of data bits in magnetic recording media at ultrahigh densities
is compromised by thermal `flips' -- magnetic spin reversals -- of nano-sized
spin domains, which erase the stored information. Media that are magnetized
perpendicular to the plane of the film, such as ultrathin cobalt films or
multilayered structures, are more stable against thermal self-erasure than
conventional memory devices. In this context, magneto-optical memories seem
particularly promising for ultrahigh-density recording on portable disks, and
bit densities of 100 Gbit inch have been demonstrated using recent
advances in the bit writing and reading techniques. But the roughness and
mobility of the magnetic domain walls prevents closer packing of the magnetic
bits, and therefore presents a challenge to reaching even higher bit densities.
Here we report that the strain imposed by a linear defect in a magnetic thin
film can smooth rough domain walls over regions hundreds of micrometers in
size, and halt their motion. A scaling analysis of this process, based on the
generic physics of disorder-controlled elastic lines, points to a simple way by
which magnetic media might be prepared that can store data at densities in
excess of 1 Tbit inch.Comment: 5 pages, 4 figures, see also an article in TRN News at
http://www.trnmag.com/Stories/041801/Defects_boost_disc_capacity_041801.htm
Resistive state of superconducting structures with fractal clusters of a normal phase
The effect of morphologic factors on magnetic flux dynamics and critical
currents in percolative superconducting structures is considered. The
superconductor contains the fractal clusters of a normal phase, which act as
pinning centers. The properties of these clusters are analyzed in the general
case of gamma-distribution of their areas. The statistical characteristics of
the normal phase clusters are studied, the critical current distribution is
derived, and the dependencies of the main statistical parameters on the fractal
dimension are found. The effect of fractal clusters of a normal phase on the
electric field induced by the motion of the magnetic flux after the vortices
have been broken away from pinning centers is considered. The voltage-current
characteristics of fractal superconducting structures in a resistive state for
an arbitrary fractal dimension are obtained. It is found that the fractality of
the boundaries of normal phase clusters intensifies magnetic flux trapping and
thereby increases the current-carrying capability of the superconductor.Comment: 15 pages with 8 figures, revtex3, alternative e-mail of author is
[email protected]
Thermally activated Hall creep of flux lines from a columnar defect
We analyse the thermally activated depinning of an elastic string (line
tension ) governed by Hall dynamics from a columnar defect modelled
as a cylindrical potential well of depth for the case of a small
external force An effective 1D field Hamiltonian is derived in order to
describe the 2D string motion. At high temperatures the decay rate is
proportional to with a constant of order of the
critical force and U(F) \sim{\left ({\epsilon V_{0}})}^{{1}/{2}}{V_{0}/{F}}
the activation energy. The results are applied to vortices pinned by columnar
defects in superclean superconductors.Comment: 12 pages, RevTeX, 2 figures inserte
A new apparatus for deep patterning of beam sensitive targets by means of high-energy ion beam
The paper reports on a high precision equipment designed to modify over
3-dimensions (3D) by means of high-energy gold ions the local properties of
thin and thick films. A target-moving system aimed at creating patterns across
the volume is driven by an x-y writing protocol that allows one to modify beam
sensitive samples over micrometer-size regions of whatever shape. The apparatus
has a mechanical resolution of 15 nm. The issue of the local fluence
measurement has been particularly addressed. The setup has been checked by
means of different geometries patterned on beam sensitive sheets as well as on
superconducting materials. In the last case the 3D modification consists of
amorphous nanostructures. The nanostructures create zones with different
dissipative properties with respect to the virgin regions. The main analysis
method consists of magneto-optical imaging that provides local information on
the electrodynamics of the modified zones. Features typical of non-linear
current flow hint at which pattern geometry is more functional to applications
in the framework of nanostructures across superconducting films.Comment: 7 page
New fabrication approach to ZnO multiple nanofiber sensors
In the presented work, ZnO nanofiber sensor structures designed and fabricated
using a standard microelectronic device technology were studied. The structures in the
configuration of a resistor with chemically active ZnO multiple nanofibers deposited by
electrospinning method were prepared. Investigation of inclusion in the process reactive-
ly sputtered AlN insulating film to improve the robustness of the nanofibres on the
substrate was undertaken. Selective wet chemical etching of AlN film using photoresist
developers and a photoresist mask to define the sensor active area was studied. The
Ti/Au ohmic contacts were fabricated using the lift-off photolithography process. To-
pography of the sensor structure details was investigated using AFM. Electrical charac-
terization by means of I-V measurements was made. Sensitivity to the physiologically
relevant concentration of Bovine Serum Albumin in water solution was shown.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2058
Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms
We analyze the angular dependence of the irreversible magnetization of
YBaCuO crystals with columnar defects inclined from the c-axis. At
high fields a sharp maximum centered at the tracks' direction is observed. At
low fields we identify a lock-in phase characterized by an angle-independent
pinning strength and observe an angular shift of the peak towards the c-axis
that originates in the material anisotropy. The interplay among columnar
defects, twins and ab-planes generates a variety of staircase structures. We
show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure
Vortex dynamics in layered superconductors with correlated defects: influence of interlayer coupling
We report a detailed study of the vortex dynamics and vortex phase diagrams
of two amorphous Ta_0.3Ge_0.7/Ge multilayered films with intrinsic coplanar
defects, but different interlayer coupling. A pinned Bose-glass phase in the
more weakly coupled sample exists only below a cross-over field H* in striking
contrast to the strongly coupled film. Above H* the flux lines are thought to
break up into pancake vortices and the cross-over field is significantly
increased when the field is aligned along the extended defects. The two films
show different vortex creep excitations in the Bose-glass phase.Comment: zip file: 1 RevTex, 5 figures (png
Shape Changes of Self-Assembled Actin Bilayer Composite Membranes
We report the self-assembly of thin actin shells beneath the membranes of
giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin
polymerization in the initially spherical vesicles. Buckling of the vesicles
and the formation of blisters after thermally induced bilayer expansion is
demonstrated. Bilayer flickering is dominated by tension generated by its
coupling to the actin cortex. Quantitative flicker analysis suggests the
bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to
undulation forces.Comment: pdf-file, has been accepted by PR
- …
