769 research outputs found
Asteroseismic surface gravity for evolved stars
Context: Asteroseismic surface gravity values can be of importance in
determining spectroscopic stellar parameters. The independent log(g) value from
asteroseismology can be used as a fixed value in the spectroscopic analysis to
reduce uncertainties due to the fact that log(g) and effective temperature can
not be determined independently from spectra. Since 2012, a combined analysis
of seismically and spectroscopically derived stellar properties is ongoing for
a large survey with SDSS/APOGEE and Kepler. Therefore, knowledge of any
potential biases and uncertainties in asteroseismic log(g) values is now
becoming important. Aims: The seismic parameter needed to derive log(g) is the
frequency of maximum oscillation power (nu_max). Here, we investigate the
influence of nu_max derived with different methods on the derived log(g)
values. The large frequency separation between modes of the same degree and
consecutive radial orders (Dnu) is often used as an additional constraint for
the determination of log(g). Additionally, we checked the influence of small
corrections applied to Dnu on the derived values of log(g). Methods We use
methods extensively described in the literature to determine nu_max and Dnu
together with seismic scaling relations and grid-based modeling to derive
log(g). Results: We find that different approaches to derive oscillation
parameters give results for log(g) with small, but different, biases for
red-clump and red-giant-branch stars. These biases are well within the quoted
uncertainties of ~0.01 dex (cgs). Corrections suggested in the literature to
the Dnu scaling relation have no significant effect on log(g). However somewhat
unexpectedly, method specific solar reference values induce biases of the order
of the uncertainties, which is not the case when canonical solar reference
values are used.Comment: 8 pages, 5 figures, accepted for publication by A&
Asteroseismic classification of stellar populations among 13000 red giants observed by Kepler
Of the more than 150000 targets followed by the Kepler Mission, about 10%
were selected as red giants. Due to their high scientific value, in particular
for Galaxy population studies and stellar structure and evolution, their Kepler
light curves were made public in late 2011. More than 13000 (over 85%) of these
stars show intrinsic flux variability caused by solar-like oscillations making
them ideal for large scale asteroseismic investigations. We automatically
extracted individual frequencies and measured the period spacings of the dipole
modes in nearly every red giant. These measurements naturally classify the
stars into various populations, such as the red giant branch, the low-mass
(M/Msol
1.8) secondary clump. The period spacings also reveal that a large fraction of
the stars show rotationally induced frequency splittings. This sample of stars
will undoubtedly provide an extremely valuable source for studying the stellar
population in the direction of the Kepler field, in particular when combined
with complementary spectroscopic surveys.Comment: 6 page, 5 figures, accepted by ApJ
Helioseismology, solar models and solar neutrinos
We review recent advances concerning helioseismology, solar models and solar
neutrinos. Particularly we shall address the following points: i) helioseismic
tests of recent SSMs; ii)the accuracy of the helioseismic determination of the
sound speed near the solar center; iii)predictions of neutrino fluxes based on
helioseismology, (almost) independent of SSMs; iv)helioseismic tests of exotic
solar models.Comment: 11 pages with 6 ps figures included, procsla style, based on the
talks presented at Neutrino Telescopes '99, Venice, February 1999, and at
Valencia '99, Valencia, May 1999, to appear in the proceeding
The universal red-giant oscillation pattern; an automated determination with CoRoT data
The CoRoT and Kepler satellites have provided thousands of red-giant
oscillation spectra. The analysis of these spectra requires efficient methods
for identifying all eigenmode parameters. The assumption of new scaling laws
allows us to construct a theoretical oscillation pattern. We then obtain a
highly precise determination of the large separation by correlating the
observed patterns with this reference. We demonstrate that this pattern is
universal and are able to unambiguously assign the eigenmode radial orders and
angular degrees. This solves one of the current outstanding problems of
asteroseismology hence allowing precise theoretical investigation of red-giant
interiors.Comment: Accepted in A&A letter
Period-luminosity relations in evolved red giants explained by solar-like oscillations
Solar-like oscillations in red giants have been investigated with CoRoT and
Kepler, while pulsations in more evolved M giants have been studied with
ground-based microlensing surveys. After 3.1 years of observation with Kepler,
it is now possible to make a link between these different observations of
semi-regular variables. We aim to identify period-luminosity sequences in
evolved red giants identified as semi-regular variables. Then, we investigate
the consequences of the comparison of ground-based and space-borne
observations. We have first measured global oscillation parameters of evolved
red giants observed with Kepler with the envelope autocorrelation function
method. We then used an extended form of the universal red giant oscillation
pattern, extrapolated to very low frequency, to fully identify their
oscillations. From the link between red giant oscillations observed by Kepler
and period-luminosity sequences, we have identified these relations in evolved
red giants as radial and non-radial solar-like oscillations. We were able to
expand scaling relations at very low frequency. This helped us to identify the
different sequences of period-luminosity relations, and allowed us to propose a
calibration of the K magnitude with the observed frequency large separation.
Interpreting period-luminosity relations in red giants in terms of solar-like
oscillations allows us to investigate, with a firm physical basis, the time
series obtained from ground-based microlensing surveys. This can be done with
an analytical expression that describes the low-frequency oscillation spectra.
The different behavior of oscillations at low frequency, with frequency
separations scaling only approximately with the square root of the mean stellar
density, can be used to address precisely the physics of the semi-regular
variables.Comment: Accepted in A&
The Whole Heliosphere Interval in the Context of a Long and Structured Solar Minimum: An Overview from Sun to Earth
Throughout months of extremely low solar activity during the recent extended solar-cycle minimum, structural evolution continued to be observed from the Sun through the solar wind and to the Earth. In 2008, the presence of long-lived and large low-latitude coronal holes meant that geospace was periodically impacted by high-speed streams, even though solar irradiance, activity, and interplanetary magnetic fields had reached levels as low as, or lower than, observed in past minima. This time period, which includes the first Whole Heliosphere Interval (WHI 1: Carrington Rotation (CR) 2068), illustrates the effects of fast solar-wind streams on the Earth in an otherwise quiet heliosphere. By the end of 2008, sunspots and solar irradiance had reached their lowest levels for this minimum (e.g., WHI 2: CR 2078), and continued solar magnetic-flux evolution had led to a flattening of the heliospheric current sheet and the decay of the low-latitude coronal holes and associated Earth-intersecting high-speed solar-wind streams. As the new solar cycle slowly began, solar-wind and geospace observables stayed low or continued to decline, reaching very low levels by June – July 2009. At this point (e.g., WHI 3: CR 2085) the Sun–Earth system, taken as a whole, was at its quietest. In this article we present an overview of observations that span the period 2008 – 2009, with highlighted discussion of CRs 2068, 2078, and 2085. We show side-by-side observables from the Sun’s interior through its surface and atmosphere, through the solar wind and heliosphere and to the Earth’s space environment and upper atmosphere, and reference detailed studies of these various regimes within this topical issue and elsewhere
Helioseismology, solar models and neutrino fluxes
We present our results concerning a systematical analysis of helioseismic
implications on solar structure and neutrino production. We find
Y, and
gr/cm. In the interval , the quantity is
determined with and accuracy of \permille~or better. At the solar center
still one has remarkable accuracy, . We compare the predictions
of recent solar models (standard and non-standard) with the helioseismic
results. By constructing helioseismically constrained solar models, the central
solar temperature is found to be K with a conservatively
estimated accuracy of 1.4%, so that the major unceratainty on neutrino fluxes
is due to nuclear cross section and not to solar inputs.Comment: 14 pages including 9 figures, LaTex file, espcrc2.sty is needed; to
appear in Nucl. Phys. B Proc. Suppl., Proceedings of TAUP97 conference,
Laboratori Nazionali del Gran Sasso, September 199
Internal rotation of red giants by asteroseismology
We present an asteroseismic approach to study the dynamics of the stellar
interior in red-giant stars by asteroseismic inversion of the splittings
induced by the stellar rotation on the oscillation frequencies. We show
preliminary results obtained for the red giant KIC4448777 observed by the space
mission Kepler.Comment: 3 pages, 4 figures, the 40th Liege International Astrophysical
Colloquium Liac40, 'Ageing low mass stars: from red giants to white dwarfs',
to be published on EPJ Web of Conference
Internal rotation of the red-giant star KIC 4448777 by means of asteroseismic inversion
In this paper we study the dynamics of the stellar interior of the early
red-giant star KIC 4448777 by asteroseismic inversion of 14 splittings of the
dipole mixed modes obtained from {\it Kepler} observations. In order to
overcome the complexity of the oscillation pattern typical of red-giant stars,
we present a procedure which involves a combination of different methods to
extract the rotational splittings from the power spectrum. We find not only
that the core rotates faster than the surface, confirming previous inversion
results generated for other red giants (Deheuvels et al. 2012,2014), but we
also estimate the variation of the angular velocity within the helium core with
a spatial resolution of and verify the hypothesis of a sharp
discontinuity in the inner stellar rotation (Deheuvels et al. 2014). The
results show that the entire core rotates rigidly with an angular velocity of
about ~nHz and provide evidence for an
angular velocity decrease through a region between the helium core and part of
the hydrogen burning shell; however we do not succeed to characterize the
rotational slope, due to the intrinsic limits of the applied techniques. The
angular velocity, from the edge of the core and through the hydrogen burning
shell, appears to decrease with increasing distance from the center, reaching
an average value in the convective envelope of
~nHz. Hence, the core in KIC~4448777 is
rotating from a minimum of 8 to a maximum of 17 times faster than the envelope.
We conclude that a set of data which includes only dipolar modes is sufficient
to infer quite accurately the rotation of a red giant not only in the dense
core but also, with a lower level of confidence, in part of the radiative
region and in the convective envelope.Comment: accepted for publication on Ap
Evolutionary influences on the structure of red-giant acoustic oscillation spectra from 600d of Kepler observations
Context: The Kepler space mission is reaching continuous observing times long
enough to start studying the fine structure of the observed p-mode spectra.
Aims: In this paper, we aim to study the signature of stellar evolution on the
radial and p-dominated l=2 modes in an ensemble of red giants that show
solar-type oscillations. Results: We find that the phase shift of the central
radial mode (eps_c) is significantly different for red giants at a given large
frequency separation (Dnu_c) but which burn only H in a shell (RGB) than those
that have already ignited core He burning. Even though not directly probing the
stellar core the pair of local seismic observables (Dnu_c, eps_c) can be used
as an evolutionary stage discriminator that turned out to be as reliable as the
period spacing of the mixed dipole modes. We find a tight correlation between
eps_c and Dnu_c for RGB stars and no indication that eps_c depends on other
properties of these stars. It appears that the difference in eps_c between the
two populations becomes if we use an average of several radial orders, instead
of a local, i.e. only around the central radial mode, Dnu to determine the
phase shift. This indicates that the information on the evolutionary stage is
encoded locally, in the shape of the radial mode sequence. This shape turns out
to be approximately symmetric around the central radial mode for RGB stars but
asymmetric for core He burning stars. We computed radial modes for a sequence
of RG models and find them to qualitatively confirm our findings. We also find
that, at least in our models, the local Dnu is an at least as good and mostly
better proxy for both the asymptotic spacing and the large separation scaled
from the model density than the average Dnu. Finally, we investigate the
signature of the evolutionary stage on the small frequency separation and
quantify the mass dependency of this seismic parameter.Comment: 12 pages, 9 figures, accepted for publication in A&
- …
