671 research outputs found
Unexpected systematic degeneracy in a system of two coupled Gaudin models with homogeneous couplings
We report an unexpected systematic degeneracy between different multiplets in
an inversion symmetric system of two coupled Gaudin models with homogeneous
couplings, as occurring for example in the context of solid state quantum
information processing. We construct the full degenerate subspace (being of
macroscopic dimension), which turns out to lie in the kernel of the commutator
between the two Gaudin models and the coupling term. Finally we investigate to
what extend the degeneracy is related to the inversion symmetry of the system
and find that indeed there is a large class of systems showing the same type of
degeneracy.Comment: 13 pages, 4 figure
Perturbative regimes in central spin models
Central spin models describe several types of solid state nanostructures
which are presently considered as possible building blocks of future quantum
information processing hardware. From a theoretical point of view, a key issue
remains the treatment of the flip-flop terms in the Hamiltonian in the presence
of a magnetic field. We systematically study the influence of these terms, both
as a function of the field strength and the size of the spin baths. We find
crucial differences between initial states with central spin configurations of
high and such of low polarizations. This has strong implications with respect
to the influence of a magnetic field on the flip-flop terms in central spin
models of a single and more than one central spin. Furthermore, the
dependencies on bath size and field differ from those anticipated so far. Our
results might open the route for the systematic search for more efficient
perturbative treatments of central spin problems.Comment: 7 pages, 3 figure
Hyperfine induced spin and entanglement dynamics in Double Quantum Dots: A homogeneous coupling approach
We investigate hyperfine induced electron spin and entanglement dynamics in a
system of two quantum dot spin qubits. We focus on the situation of zero
external magnetic field and concentrate on approximation-free theoretical
methods. We give an exact solution of the model for homogeneous hyperfine
coupling constants (with all coupling coefficients being equal) and varying
exchange coupling, and we derive the dynamics therefrom. After describing and
explaining the basic dynamical properties, the decoherence time is calculated
from the results of a detailed investigation of the short time electron spin
dynamics. The result turns out to be in good agreement with experimental data.Comment: 10 pages, 8 figure
Different types of integrability and their relation to decoherence in central spin models
We investigate the relation between integrability and decoherence in central
spin models with more than one central spin. We show that there is a transition
between integrability ensured by the Bethe ansatz and integrability ensured by
complete sets of commuting operators. This has a significant impact on the
decoherence properties of the system, suggesting that it is not necessarily
integrability or nonintegrability which is related to decoherence, but rather
its type or a change from integrability to nonintegrability.Comment: 4 pages, 3 figure
Non-diffractive mechanisms in the meson photoproduction on nucleons
We examine the non-diffractive mechanisms in the meson photoproduction
from threshold up to a few GeV using an effective Lagrangian in a constituent
quark model. The new data from CLAS at large angles can be consistently
accounted for in terms of {\it s}- and {\it u}-channel processes. Isotopic
effects arising from the reactions and , are investigated by comparing the cross sections and polarized beam
asymmetries. Our result highlights an experimental means of studying
non-diffractive mechanisms in meson photoproduction.Comment: 4 eps figures, version accepted by Phys. Lett.
Binary trees, coproducts, and integrable systems
We provide a unified framework for the treatment of special integrable
systems which we propose to call "generalized mean field systems". Thereby
previous results on integrable classical and quantum systems are generalized.
Following Ballesteros and Ragnisco, the framework consists of a unital algebra
with brackets, a Casimir element, and a coproduct which can be lifted to higher
tensor products. The coupling scheme of the iterated tensor product is encoded
in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new
appendices adde
Carbon Nanotubes as Nanoelectromechanical Systems
We theoretically study the interplay between electrical and mechanical
properties of suspended, doubly clamped carbon nanotubes in which charging
effects dominate. In this geometry, the capacitance between the nanotube and
the gate(s) depends on the distance between them. This dependence modifies the
usual Coulomb models and we show that it needs to be incorporated to capture
the physics of the problem correctly. We find that the tube position changes in
discrete steps every time an electron tunnels onto it. Edges of Coulomb
diamonds acquire a (small) curvature. We also show that bistability in the tube
position occurs and that tunneling of an electron onto the tube drastically
modifies the quantized eigenmodes of the tube. Experimental verification of
these predictions is possible in suspended tubes of sub-micron length.Comment: 8 pages, 5 eps figures included. Major changes; new material adde
Institutional factors governing the deployment of remote experiments: lessons from the rexnet project
Remote labs offer many unique advantages to
students as they provide opportunities to access experiments
and learning scenarios that would be otherwise unavailable.
At the same time, however, these opportunities introduce
real challenges to the institutions hosting the remote labs.
This paper draws on the experiences of the REXNET
project consortium to expose a number of these issues as a
means of furthering the debate on the value of remote labs
and the best practices in deploying them. The paper
presents a brief outline of the various types of remote lab
scenarios that might be deployed. It then describes the key
human and technological actors that have an interest in or
are intrinsic to a remote lab instance, with a description of
the role of each actor and their interest. Some relationships
between these various actors are then discussed with some
factors that might influence those relationships. Finally
some general issues are briefly described
The Wave Function of 2S Radially Excited Vector Mesons from Data for Diffraction Slope
In the color dipole gBFKL dynamics we predict a strikingly different Q^2 and
energy dependence of the diffraction slope for the elastic production of ground
state V(1S) and radially excited V'(2S) light vector mesons. The color dipole
model predictions for the diffraction slope for \rho^0 and \phi^0 production
are in a good agreement with the data from the fixed target and collider HERA
experiments. We present how a different form of anomalous energy and Q^2
dependence of the diffraction slope for V'(2S) production leads to a different
position of the node in radial wave function and discuss a possibility how to
determine this position from the fixed target and HERA data.Comment: 20 pages and 6 figures. Title change
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this second part we present the results on the
photoproduction reactions and the electromagnetic properties of the resonances.
The inclusion of all important final states up to sqrt(s) = 2 GeV allows for
estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
- …
