3,614 research outputs found

    Electromagnetic corrections to π\pi ^-p scattering length from pionic hydrogen

    Get PDF
    We derive a closed, model space independent, expression for the electromagnetic correction factor δ\delta to the scattering length aa extracted from a hydrogenic atom with an extended charge to order α2\alpha ^2 and a3a^3 in the limit of a short ranged hadronic interaction.Comment: 4 pages; PANIC02, XVIth Conference on Particles and Nuclei, Osaka, to appear in Nuclear Physics

    Precision determination of the pi-N scattering lengths and the charged pi-NN coupling constant

    Get PDF
    We critically evaluate the isovector GMO sumrule for the charged πNN\pi N N coupling constant using recent precision data from π\pi ^-p and π\pi^-d atoms and with careful attention to systematic errors. From the π\pi ^-d scattering length we deduce the pion-proton scattering lengths 1/2(aπp+aπn)=(20±6{1/2}(a_{\pi ^-p}+a_{\pi ^-n})=(-20\pm 6(statistic)±10 \pm 10 (systematic))~104mπc1\cdot 10^{-4}m_{\pi_c}^{-1} and 1/2(aπpaπn)=(903±14)104mπc1{1/2}(a_{\pi ^-p}-a_{\pi ^-n})=(903 \pm 14)\cdot 10^{-4}m_{\pi_c}^{-1}. From this a direct evaluation gives gc2(GMO)/4π=14.20±0.07g^2_c(GMO)/4\pi =14.20\pm 0.07(statistic)±0.13\pm 0.13(systematic) or fc2/4π=0.0786±0.0008f^2_c/4\pi= 0.0786\pm 0.0008.Comment: 4 pages, 1 figure, latex and postscript; invited talk at PANIC99; to appear in Nucl. Phys. A; changed notation: g^2 and f^2 replaced by conventional g^2/4\pi and f^2/4\p

    The Pion-Nucleon coupling constant from np charge exchange scattering

    Full text link
    A novel extrapolation method has been used to deduce the charged Pion-Nucleon coupling constant from backward npnp differential scattering cross sections. We applied it to new measurements performed at 162 MeV at the The Svedberg Laboratory in Uppsala. In the angular range 150180150^\circ-180^\circ, the carefully normalized data are steeper than those of most previous measurements. The extracted value, gπ±2=14.52±0.26g^2_{\pi^\pm} = 14.52 \pm 0.26, in good agreement with the classical value, is higher than those determined in recent nucleon-nucleon partial-wave analyses.Comment: 6 pages, 3 encapsulated figures, epsfig, menu97.cls (included

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Exclusive K+K^+ production in proton-nucleus collisions

    Full text link
    The exclusive K+K^+ meson production in a proton-nucleus collision, leading to two body final states, is investigated in a fully covariant two-nucleon model based on the effective Lagrangian picture. The explicit kaon production vertex is described via creation, propagation and decay into relevant channel of NN^*(1650), NN^*(1710) and NN^*(1720) intermediate baryonic states in the initial collision of the projectile nucleon with one of its target counterparts which is modeled by the one-pion exchange process. The calculated cross sections show strong sensitivity to the medium effects on pion propagator and to the final hypernuclear state excited in the reaction.Comment: Two new figures, version accepted for publication by Phys. Rev.

    Videoconferencing via satellite. Opening Congress to the people: Technical report

    Get PDF
    The feasibility of using satellite videoconferencing as a mechanism for informed dialogue between Congressmen and constituents to strengthen the legislative process was evaluated. Satellite videoconferencing was defined as a two-way interactive television with the TV signals transmitted by satellite. With videoconferencing, one or more Congressmen in Washington, D. C. can see, hear and talk with groups of citizens at distant locations around the country. Simultaneously, the citizens can see, hear and talk with the Congressmen

    Spherical codes, maximal local packing density, and the golden ratio

    Full text link
    The densest local packing (DLP) problem in d-dimensional Euclidean space Rd involves the placement of N nonoverlapping spheres of unit diameter near an additional fixed unit-diameter sphere such that the greatest distance from the center of the fixed sphere to the centers of any of the N surrounding spheres is minimized. Solutions to the DLP problem are relevant to the realizability of pair correlation functions for packings of nonoverlapping spheres and might prove useful in improving upon the best known upper bounds on the maximum packing fraction of sphere packings in dimensions greater than three. The optimal spherical code problem in Rd involves the placement of the centers of N nonoverlapping spheres of unit diameter onto the surface of a sphere of radius R such that R is minimized. It is proved that in any dimension, all solutions between unity and the golden ratio to the optimal spherical code problem for N spheres are also solutions to the corresponding DLP problem. It follows that for any packing of nonoverlapping spheres of unit diameter, a spherical region of radius less than or equal to the golden ratio centered on an arbitrary sphere center cannot enclose a number of sphere centers greater than one more than the number that can be placed on the region's surface.Comment: 12 pages, 1 figure. Accepted for publication in the Journal of Mathematical Physic

    Unusual statistics of interference effects in neutron scattering from compound nuclei

    Get PDF
    We consider interference effects between p-wave resonance scattering amplitude and background s-wave amplitude in low-energy neutron scattering from a heavy nucleus which goes through the compound nucleus stage. The first effect is in the difference between the forward and backward scattering cross sections. Because of the chaotic nature of the compound states, this effect is a random variable with zero mean. However, a statistical consideration shows that the probability distribution of this effect does not obey the standard central limit theorem. That is, the probability density for the effect averaged over n resonances does not become a Gaussian distribution with the variance decreasing as 1/sqrt(n) (``violation'' of the theorem!). We derive the probability distribution of the effect and the limit distribution of the average. It is found that the width of this distribution does not decrease with the increase of n, i.e., fluctuations are not suppressed by averaging. Furthermore, we consider the correlation between the neutron spin and the scattering plane and find that this effect, although much smaller, shows fluctuations which actually increase upon averaging over many measurements. Limits of the effects due to finite resonance widths are also considered. In the appendix we present a simple derivation of the limit theorem for the average of random variables with infinite variances.Comment: 15 pages, RevTeX, submitted to Phys. Rev.

    More about the comparison of local and non-local NN interaction models

    Get PDF
    The effect of non-locality in the NN interaction with an off-energy shell character has been studied in the past in relation with the possibility that some models could be approximately phase-shifts equivalent. This work is extended to a non-locality implying terms that involve an anticommutator with the operator p^2. It includes both scalar and tensor components. The most recent ``high accuracy'' models are considered in the analysis. After studying the deuteron wave functions, electromagnetic properties of various models are compared with the idea that these ones differ by their non-locality but are equivalent up to a unitary transformation. It is found that the extra non-local tensor interaction considered in this work tends to re-enforce the role of the term considered in previous works, allowing one to explain almost completely the difference in the deuteron D-state probabilities evidenced by the comparison of the Bonn-QB and Paris models for instance. Conclusions for the effect of the non-local scalar interaction are not so clear. In many cases, it was found that these terms could explain part of the differences that the comparison of predictions for various models evidences but cases where they could not were also found. Some of these last ones have been analyzed in order to pointing out the origin of the failure.Comment: 32 pages, 24 figure

    A consistent model for \pi N transition distribution amplitudes and backward pion electroproduction

    Full text link
    The extension of the concept of generalized parton distributions leads to the introduction of baryon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of the nonlocal three quark operator between a nucleon and a meson state. We present a general framework for modelling nucleon to pion (πN\pi N) TDAs. Our main tool is the spectral representation for \pi N TDAs in terms of quadruple distributions. We propose a factorized Ansatz for quadruple distributions with input from the soft-pion theorem for \pi N TDAs. The spectral representation is complemented with a D-term like contribution from the nucleon exchange in the cross channel. We then study backward pion electroproduction in the QCD collinear factorization approach in which the non-perturbative part of the amplitude involves \pi N TDAs. Within our two component model for \pi N TDAs we update previous leading-twist estimates of the unpolarized cross section. Finally, we compute the transverse target single spin asymmetry as a function of skewness. We find it to be sizable in the valence region and sensitive to the phenomenological input of our \pi N TDA model.Comment: 39 pages, 9 figure
    corecore