2,536 research outputs found

    Quality control of CarboEurope flux data ? Part II: Inter-comparison of eddy-covariance software

    No full text
    International audienceAs part of the quality assurance and quality control activities within the CarboEurope-IP network, a comparison of eddy-covariance software was conducted. For four five-day datasets, CO2 flux estimates were calculated by seven commonly used software packages to assess the uncertainty of CO2 flux estimates due to differences in post-processing. The datasets originated from different sites representing different commonly applied instrumentation and different canopy structures to cover a wide range of realistic conditions. Data preparation, coordinate rotation and the implementation of the correction for high frequency spectral losses were identified as crucial processing steps leading to significant discrepancies in the CO2 flux results. The overall comparison indicated a good although not yet perfect agreement among the different software within 5?10% difference for 30-min CO2 flux values. Conceptually different ideas about the selection and application of processing steps were a main reason for the differences in the CO2 flux estimates observed. A balance should be aspired between scientific freedom on the one hand, in order to advance methodical issues, and standardisation of procedures on the other hand, in order to obtain comparable fluxes for multi-site synthesis studies

    High precision and continuous field measurements of δ 13C and δ 18O in carbon dioxide with a cryogen-free QCLAS

    Get PDF
    The present paper describes a compact and cryogen-free, quantum cascade laser based absorption spectrometer (QCLAS) designed for in situ, continuous and high precision isotope ratio measurements of atmospheric CO2. The mobile instrument incorporates several new features including a novel astigmatic multi-pass cell assembly, a quasi-room temperature quantum cascade laser, thermoelectrically cooled detectors as well as a new retrieval approach. The combination of these features now makes it possible to measure isotope ratios of ambient CO2 with a precision of 0.03 and 0.05‰ for δ13C and δ18O, respectively, using a 100s integration time. A robust and optimized calibration procedure was developed to bring the retrieved isotope ratios on an absolute scale. This assures an accuracy better than 0.1‰ under laboratory conditions. The instrument performance was also assessed in a field campaign in which the spectrometer operated autonomously and provided mixing ratio values for the main three CO2 isotopologues at one second time resolution. An accuracy of 0.2‰ was routinely obtained for both isotope ratios during the entire period. The results were in excellent agreement with the standard laboratory-based isotope ratio mass spectrometer measurements made on field-collected flask samples. A few illustrative examples are used to depict the potential of this optical method in atmosphere-biosphere researc

    Coulomb Drag Between Parallel Ballistic Quantum Wires

    Full text link
    The Coulomb drag between parallel, {\it ballistic} quantum wires is studied theoretically in the presence of a perpendicular magnetic field B. The transresistance R_D shows peaks as a function of the Fermi level and splitting energy between the 1D subbands of the wires. The sharpest peaks appear when the Fermi level crosses the subband extrema so that the Fermi momenta are small. Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband transitions of electrons have maximum probability; the {\it intra}-subband transitions correspond to a small splitting energy. R_D depends on the field B in a nonmonotonic fashion: it decreases with B, as a result of the suppression of backscattering, and increases sharply when the Fermi level approaches the subband bottoms and the suppression is outbalanced by the increase of the Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys. Rev. B,in pres

    Inelastic Coulomb scattering rates due to acoustic and optical plasmon modes in coupled quantum wires

    Full text link
    We report a theoretical study on the inelastic Coulomb scattering rate of an injected electron in two coupled quantum wires in quasi-one-dimensional doped semiconductors. Two peaks appear in the scattering spectrum due to the optical and the acoustic plasmon scattering in the system. We find that the scattering rate due to the optical plasmon mode is similar to that in a single wire but the acoustic plasmon scattering depends crucially on its dispersion relation at small qq. Furthermore, the effects of tunneling between the two wires are studied on the inelastic Coulomb scattering rate. We show that a weak tunneling can strongly affect the acoustic plasmon scattering.Comment: 6 Postscript figure

    CLON: overlay networks and gossip protocols for cloud environments

    Get PDF
    Although epidemic or gossip-based multicast is a robust and scalable approach to reliable data dissemination, its inherent redundancy results in high resource consumption on both links and nodes. This problem is aggravated in settings that have costlier or resource constrained links as happens in Cloud Computing infrastructures composed by several interconnected data centers across the globe. The goal of this work is therefore to improve the efficiency of gossip-based reliable multicast by reducing the load imposed on those constrained links. In detail, the proposed clon protocol combines an overlay that gives preference to local links and a dissemination strategy that takes into account locality. Extensive experimental evaluation using a very large number of simulated nodes shows that this results in a reduction of traffic in constrained links by an order of magnitude, while at the same time preserving the resilience properties that make gossip-based protocols so attractive.HP Labs Innovation Research Award, project DC2MS (IRA/CW118736

    Mesoscopic effects in tunneling between parallel quantum wires

    Full text link
    We consider a phase-coherent system of two parallel quantum wires that are coupled via a tunneling barrier of finite length. The usual perturbative treatment of tunneling fails in this case, even in the diffusive limit, once the length L of the coupling region exceeds a characteristic length scale L_t set by tunneling. Exact solution of the scattering problem posed by the extended tunneling barrier allows us to compute tunneling conductances as a function of applied voltage and magnetic field. We take into account charging effects in the quantum wires due to applied voltages and find that these are important for 1D-to-1D tunneling transport.Comment: 8 pages, 7 figures, improved Figs., added Refs. and appendix, to appear in Phys. Rev.

    In situ detection of boron by ChemCam on Mars

    Get PDF
    We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels Curiosity rover ChemCam instrument in calcium-sulfate-filled fractures, which formed in a late-stage groundwater circulating mainly in phyllosilicate-rich bedrock interpreted as lacustrine in origin. We consider two main groundwater-driven hypotheses to explain the presence of boron in the veins: leaching of borates out of bedrock or the redistribution of borate by dissolution of borate-bearing evaporite deposits. Our results suggest that an evaporation mechanism is most likely, implying that Gale groundwaters were mildly alkaline. On Earth, boron may be a necessary component for the origin of life; on Mars, its presence suggests that subsurface groundwater conditions could have supported prebiotic chemical reactions if organics were also present and provides additional support for the past habitability of Gale crater

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide

    Get PDF
    Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales
    corecore