1,143 research outputs found
Atomic Fermi gas in the trimerized Kagom\'e lattice at the filling 2/3
We study low temperature properties of an atomic spinless interacting Fermi
gas in the trimerized Kagom\'e lattice for the case of two fermions per trimer.
The system is described by a quantum spin 1/2 model on the triangular lattice
with couplings depending on bonds directions. Using exact diagonalizations we
show that the system exhibits non-standard properties of a {\it quantum
spin-liquid crystal}, combining a planar antiferromagnetic order with an
exceptionally large number of low energy excitations.Comment: 4 pages & 4 figures + 2 tables, better version of Fig.
Comparison of Saturated Hydraulic Conductivity Measurement Methods for a Glacial-Till Soil
Hydraulic conductivity is the single most important hydraulic parameter for flow and transport-related phenomena in soil, but the results from different measuring methods vary under different field conditions. To evaluate the performance of four in situ saturated hydraulic conductivity (Ks) measuring methods, Ks measurements were made at four depths (15, 30, 60, and 90 cm) and five locations on a glacial-till soil of Nicollet (fine-loamy, mixed, mesic Aquic Hapludoll)-Clarion (fine-loamy, mixed, mesic Typic Hapludoll) association. The four in situ methods were: (i) Guelph permeameter, (ii) velocity permeameter, (iii) disk permeameter, and (iv) double-tube method. The Ks was also determined in the laboratory on undisturbed soil cores collected from all the five sites and four depths. The Guelph permeameter method gave the lowest Ks values, possibly because of small sample size, whereas the disk permeameter and double-tube methods gave maximum values for Ks with minimum variability, possibly because of large sample size. Maximum variability in Ks values for soil cores at shallow depths may have occurred because of the presence or absence of open-ended macropores. Estimates of Ks, however, are most comparable for the velocity permeameter and the laboratory method using a constant-head permeameter
Quantum gases in trimerized kagom\'e lattices
We study low temperature properties of atomic gases in trimerized optical
kagom\'{e} lattices. The laser arrangements that can be used to create these
lattices are briefly described. We also present explicit results for the
coupling constants of the generalized Hubbard models that can be realized in
such lattices. In the case of a single component Bose gas the existence of a
Mott insulator phase with fractional numbers of particles per trimer is
verified in a mean field approach. The main emphasis of the paper is on an
atomic spinless interacting Fermi gas in the trimerized kagom\'{e} lattice with
two fermions per site. This system is shown to be described by a quantum spin
1/2 model on the triangular lattice with couplings that depend on the bond
directions. We investigate this model by means of exact diagonalization. Our
key finding is that the system exhibits non-standard properties of a quantum
spin-liquid crystal: it combines planar antiferromagnetic order in the ground
state with an exceptionally large number of low energy excitations. The
possibilities of experimental verification of our theoretical results are
critically discussed.Comment: 19 pages/14 figures, version to appear in Phys. Rev. A., numerous
minor corrections with respect to former lanl submissio
Monte Carlo Simulation of the Heisenberg Antiferromagnet on a Triangular Lattice: Topological Excitations
We have simulated the classical Heisenberg antiferromagnet on a triangular
lattice using a local Monte Carlo algorithm. The behavior of the correlation
length , the susceptibility at the ordering wavevector , and
the spin stiffness clearly reflects the existence of two temperature
regimes -- a high temperature regime , in which the disordering
effect of vortices is dominant, and a low temperature regime ,
where correlations are controlled by small amplitude spin fluctuations. As has
previously been shown, in the last regime, the behavior of the above quantities
agrees well with the predictions of a renormalization group treatment of the
appropriate nonlinear sigma model. For , a satisfactory fit of the
data is achieved, if the temperature dependence of and is
assumed to be of the form predicted by the Kosterlitz--Thouless theory.
Surprisingly, the crossover between the two regimes appears to happen in a very
narrow temperature interval around .Comment: 13 pages, 8 Postscript figure
Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni
Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes
Magneto-thermodynamics of the spin-1/2 Kagome antiferromagnet
In this paper, we use a new hybrid method to compute the thermodynamic
behavior of the spin-1/2 Kagome antiferromagnet under the influence of a large
external magnetic field. We find a T^2 low-temperature behavior and a very low
sensitivity of the specific heat to a strong external magnetic field. We
display clear evidence that this low temperature magneto-thermal effect is
associated to the existence of low-lying fluctuating singlets, but also that
the whole picture (T^2 behavior of Cv and thermally activated spin
susceptibility) implies contribution of both non magnetic and magnetic
excitations. Comparison with experiments is made.Comment: 4 pages, LaTeX 2.09 and RevTeX with 3 figures embedded in the text.
Version to appear in Phys. Rev. Let
Size Dependence In The Disordered Kondo Problem
We study here the role randomly-placed non-magnetic scatterers play on the
Kondo effect. We show that spin relaxation effects (with time )in the
vertex corrections to the Kondo self-energy lead to an exact cancellation of
the singular temperature dependence arising from the diffusion poles. For a
thin film of thickness and a mean-free path , disorder provides a
correction to the Kondo resistivity of the form
that explains both the disorder and sample-size depression of the Kondo effect
observed by Blachly and Giordano (PRB {\bf 51}, 12537 (1995)).Comment: 11 pages, LaTeX, 2 Postscript figure
Green's Function Approach to the Edge Spectral Density
It is shown that the conventional many-body techniques to calculate the
Green's functions can be applied to the wide, compressible edge of a quantum
Hall bar. The only ansatz we need is the existence of stable density modes that
yields a simple equation of motion of the density operators. We derive the
spectral density at a finite temperature and show how the tunneling
characteristics of a sharp edge can be deduced as a limiting case.Comment: Revised and Enlarged. Submitted to Phys. Rev.
Dendritic cell metabolism
The past 15 years have seen enormous advances in our understanding of the receptor and signalling systems that allow dendritic cells (DCs) to respond to pathogens or other danger signals and initiate innate and adaptive immune responses. We are now beginning to appreciate that many of these pathways not only stimulate changes in the expression of genes that control DC immune functions, but also affect metabolic pathways, thereby integrating the cellular requirements of the activation process. In this Review, we focus on this relatively new area of research and attempt to describe an integrated view of DC immunometabolism
Multi-particle structure in the Z_n-chiral Potts models
We calculate the lowest translationally invariant levels of the Z_3- and
Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of
the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating
N to infinity. In the high-temperature massive phase we find that the pattern
of the low-lying zero momentum levels can be explained assuming the existence
of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their
scattering states. In the superintegrable case the masses of the n-1 particles
become proportional to their respective charges: m_Q = Q m_1. Exponential
convergence in N is observed for the single particle gaps, while power
convergence is seen for the scattering levels. We also verify that
qualitatively the same pattern appears for the self-dual and integrable cases.
For general Z_n we show that the energy-momentum relations of the particles
show a parity non-conservation asymmetry which for very high temperatures is
exclusive due to the presence of a macroscopic momentum P_m=(1-2Q/n)/\phi,
where \phi is the chiral angle and Q is the Z_n-charge of the respective
particle.Comment: 22 pages (LaTeX) plus 5 figures (included as PostScript),
BONN-HE-92-3
- …
