332 research outputs found
Renormalization of Hamiltonian Field Theory; a non-perturbative and non-unitarity approach
Renormalization of Hamiltonian field theory is usually a rather painful
algebraic or numerical exercise. By combining a method based on the coupled
cluster method, analysed in detail by Suzuki and Okamoto, with a Wilsonian
approach to renormalization, we show that a powerful and elegant method exist
to solve such problems. The method is in principle non-perturbative, and is not
necessarily unitary.Comment: 16 pages, version shortened and improved, references added. To appear
in JHE
Exact Floquet states of a driven condensate and their stabilities
We investigate the Gross-Pitaevskii equation for a classically chaotic
system, which describes an atomic Bose-Einstein condensate confined in an
optical lattice and driven by a spatiotemporal periodic laser field. It is
demonstrated that the exact Floquet states appear when the external
time-dependent potential is balanced by the nonlinear mean-field interaction.
The balance region of parameters is divided into a phase-continuing region and
a phase-jumping one. In the latter region, the Floquet states are
spatiotemporal vortices of nontrivial phase structures and zero-density cores.
Due to the velocity singularities of vortex cores and the blowing-up of
perturbed solutions, the spatiotemporal vortices are unstable periodic states
embedded in chaos. The stability and instability of these Floquet states are
numerically explored by the time evolution of fidelity between the exact and
numerical solutions. It is numerically illustrated that the stable Floquet
states could be prepared from the uniformly initial states by slow growth of
the external potential.Comment: 14 pages, 3 eps figures, final version accepted for publication in J.
Phys.
Modified Gravity via Spontaneous Symmetry Breaking
We construct effective field theories in which gravity is modified via
spontaneous breaking of local Lorentz invariance. This is a gravitational
analogue of the Higgs mechanism. These theories possess additional graviton
modes and modified dispersion relations. They are manifestly well-behaved in
the UV and free of discontinuities of the van Dam-Veltman-Zakharov type,
ensuring compatibility with standard tests of gravity. They may have important
phenomenological effects on large distance scales, offering an alternative to
dark energy. For the case in which the symmetry is broken by a vector field
with the wrong sign mass term, we identify four massless graviton modes (all
with positive-definite norm for a suitable choice of a parameter) and show the
absence of the discontinuity.Comment: 5 pages; revised versio
Order in glassy systems
A directly measurable correlation length may be defined for systems having a
two-step relaxation, based on the geometric properties of density profile that
remains after averaging out the fast motion. We argue that the length diverges
if and when the slow timescale diverges, whatever the microscopic mechanism at
the origin of the slowing down. Measuring the length amounts to determining
explicitly the complexity from the observed particle configurations. One may
compute in the same way the Renyi complexities K_q, their relative behavior for
different q characterizes the mechanism underlying the transition. In
particular, the 'Random First Order' scenario predicts that in the glass phase
K_q=0 for q>x, and K_q>0 for q<x, with x the Parisi parameter. The hypothesis
of a nonequilibrium effective temperature may also be directly tested directly
from configurations.Comment: Typos corrected, clarifications adde
Growth, profits and technological choice: The case of the Lancashire cotton textile industry
Using Lancashire textile industry company case studies and financial records, mainly from the period just before the First World War, the processes of growth and decline are re-examined. These are considered by reference to the nature of Lancashire entrepreneurship and the impact on technological choice. Capital accumulation, associated wealth distributions and the character of Lancashire business organisation were sybiotically linked to the success of the industry before 1914. However, the legacy of that accumulation in later decades, chronic overcapacity, formed a barrier to reconstruction and enhanced the preciptious decline of a once great industry
The Problem of Large Leptonic Mixing
Unlike in the quark sector where simple permutation symmetries can
generate the general features of quark masses and mixings, we find it
impossible (under conditions of hierarchy for the charged leptons and without
considering the see-saw mechanism or a more elaborate extension of the SM) to
guarantee large leptonic mixing angles with any general symmetry or
transformation of only known particles. If such symmetries exist, they must be
realized in more extended scenarios.Comment: RevTeX, 4 pages, no figure
Closed String Field Theory with Dynamical D-brane
We consider a closed string field theory with an arbitrary matter current as
a source of the closed string field. We find that the source must satisfy a
constraint equation as a consequence of the BRST invariance of the theory. We
see that it corresponds to the covariant conservation law for the matter
current, and the equation of motion together with this constraint equation
determines the classical behavior of both the closed string field and the
matter. We then consider the boundary state (D-brane) as an example of a
source. We see that the ordinary boundary state cannot be a source of the
closed string field when the string coupling g turns on. By perturbative
expansion, we derive a recursion relation which represents the bulk
backreaction and the D-brane recoil. We also make a comment on the rolling
tachyon boundary state.Comment: 30 pages, LaTeX2e, no figures. Typos are correcte
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
Inflation with racetrack superpotential and matter field
Several models of inflation with the racetrack superpotential for the volume
modulus coupled to a matter field are investigated. In particular, it is shown
that two classes of racetrack inflation models, saddle point and inflection
point ones, can be constructed in a fully supersymmetric framework with the
matter field F-term as a source of supersymmetry breaking and uplifting. Two
models of F-term supersymmetry breaking are considered: the Polonyi model and
the quantum corrected O'Raifeartaigh model. In the former case, both classes of
racetrack inflation models differ significantly from the corresponding models
with non-supersymmetric uplifting. The main difference is a quite strong
dominance of the inflaton by the matter field. In addition, fine-tuning of the
parameters is relaxed as compared to the original racetrack models. In the case
of the racetrack inflation models coupled to the O'Raifeartaigh model, the
matter field is approximately decoupled from the inflationary dynamics. In all
of the above models the gravitino mass is larger than the Hubble scale during
inflation. The possibility of having the gravitino much lighter than the Hubble
scale is also investigated. It is very hard to construct models with light
gravitino in which the volume modulus dominates inflation. On the other hand,
models in which the inflationary dynamics is dominated by the matter field are
relatively simple and seem to be more natural.Comment: 40 pages, 13 figures, references added, typos corrected, version to
be publishe
Phenomenological description of quantum gravity inspired modified classical electrodynamics
We discuss a large class of phenomenological models incorporating quantum
gravity motivated corrections to electrodynamics. The framework is that of
electrodynamics in a birefringent and dispersive medium with non-local
constitutive relations, which are considered up to second order in the inverse
of the energy characterizing the quantum gravity scale. The energy-momentum
tensor, Green functions and frequency dependent refraction indices are
obtained, leading to departures from standard physics. The effective character
of the theory is also emphasized by introducing a frequency cutoff. The
analysis of its effects upon the standard notion of causality is performed,
showing that in the radiation regime the expected corrections get further
suppressed by highly oscillating terms, thus forbiding causality violations to
show up in the corresponding observational effects.Comment: 14 pages, to be published in Obregon Festschrift 2006, Gen. Rel. and
Gra
- …
