522 research outputs found

    Prospective evaluation of glutamine and phospholipids levels in first degree relatives of patients with Type 1 Diabetes from a multiethnic population

    Get PDF
    A dysregulation in the metabolism of lipids may be an early marker of autoimmunity in Type 1 Diabetes (T1D). It would be of general importance to identify metabolic patterns that would predict the risk for T1D later in life. The aim of this study was to perform a prospective evaluation of glutamine and phospholipids levels in Brazilian first degree relatives (FDR) of patients with T1D in a mean interval of 5 years

    Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein α-synuclein

    Get PDF
    The aggregation of α-synuclein (aSyn) leading to the formation of Lewy bodies is the defining pathological hallmark of Parkinson's disease (PD). Rare familial PD-associated mutations in aSyn render it aggregation-prone; however, PD patients carrying wild type (WT) aSyn also have aggregated aSyn in Lewy bodies. The mechanisms by which WT aSyn aggregates are unclear. Here, we report that inflammation can play a role in causing the aggregation of WT aSyn. We show that activation of the inflammasome with known stimuli results in the aggregation of aSyn in a neuronal cell model of PD. The insoluble aggregates are enriched with truncated aSyn as found in Lewy bodies of the PD brain. Inhibition of the inflammasome enzyme caspase-1 by chemical inhibition or genetic knockdown with shRNA abated aSyn truncation. In vitro characterization confirmed that caspase-1 directly cleaves aSyn, generating a highly aggregation-prone species. The truncation-induced aggregation of aSyn is toxic to neuronal culture, and inhibition of caspase-1 by shRNA or a specific chemical inhibitor improved the survival of a neuronal PD cell model. This study provides a molecular link for the role of inflammation in aSyn aggregation, and perhaps in the pathogenesis of sporadic PD as well

    Agricultural Biotechnology's Complementary Intellectual Assets

    Get PDF
    We formulate and test a hypothesis to explain the dramatic restructuring experienced recently by the plant breeding and seed industry. The reorganization can be explained in part by the desire to exploit complementarities between intellectual assets needed to create genetically modified organisms. This hypothesis is tested using data on agricultural biotechnology patents, notices for field tests of genetically modified organisms, and firm characteristics. The presence of complementarities is identified with a positive covariance in the unexplained variation of asset holdings. Results indicate that coordination of complementary assets have increased under the consolidation of the industry

    Metastatic triple negative breast cancer adapts its metabolism to destination tissues while retaining key metabolic signatures

    Get PDF
    Triple negative breast cancer (TNBC) metastases are assumed to exhibit similar functions in different organs as in the original primary tumor. However, studies of metastasis are often limited to a comparison of metastatic tumors with primary tumors of their origin, and little is known about the adaptation to the local environment of the metastatic sites. We therefore used transcriptomic data and metabolic network analyses to investigate whether metastatic tumors adapt their metabolism to the metastatic site and found that metastatic tumors adopt a metabolic signature with some similarity to primary tumors of their destinations. The extent of adaptation, however, varies across different organs, and metastatic tumors retain metabolic signatures associated with TNBC. Our findings suggest that a combination of anti-metastatic approaches and metabolic inhibitors selected specifically for different metastatic sites, rather than solely targeting TNBC primary tumors, may constitute a more effective treatment approach

    A Semantic Cross-Species Derived Data Management Application

    Full text link
    Managing dynamic information in large multi-site, multi-species, and multi-discipline consortia is a challenging task for data management applications. Often in academic research studies the goals for informatics teams are to build applications that provide extract-transform-load (ETL) functionality to archive and catalog source data that has been collected by the research teams. In consortia that cross species and methodological or scientific domains, building interfaces that supply data in a usable fashion and make intuitive sense to scientists from dramatically different backgrounds increases the complexity for developers. Further, reusing source data from outside one's scientific domain is fraught with ambiguities in understanding the data types, analysis methodologies, and how to combine the data with those from other research teams. We report on the design, implementation, and performance of a semantic data management application to support the NIMH funded Conte Center at the University of California, Irvine. The Center is testing a theory of the consequences of "fragmented" (unpredictable, high entropy) early-life experiences on adolescent cognitive and emotional outcomes in both humans and rodents. It employs cross-species neuroimaging, epigenomic, molecular, and neuroanatomical approaches in humans and rodents to assess the potential consequences of fragmented unpredictable experience on brain structure and circuitry. To address this multi-technology, multi-species approach, the system uses semantic web techniques based on the Neuroimaging Data Model (NIDM) to facilitate data ETL functionality. We find this approach enables a low-cost, easy to maintain, and semantically meaningful information management system, enabling the diverse research teams to access and use the data

    Sex Hormones and Gender Effects following Trauma-Hemorrhage

    Get PDF
    Trauma is the leading cause of death in the industrialized world between the ages of one and 40. A number of risk factors including age and gender have been implicated in this regard. It is therefore not surprising that the majority of trauma victims are young males. Their mortality rate following trauma is not only higher compared to females, but they are also more prone to subsequent sepsis. Age and gender are therefore important factors in the prevalence of traumatic injury as well as in susceptibility to subsequent septic complications

    Loss-of-function mutations in SLC30A8 protect against type 2 diabetes.

    Get PDF
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenLoss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of ~150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) and harbors a common variant (p.Trp325Arg) associated with T2D risk and glucose and proinsulin levels. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 × 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p.Lys34Serfs*50) demonstrated reduced glucose levels (-0.17 s.d., P = 4.6 × 10(-4)). The two most common protein-truncating variants (p.Arg138* and p.Lys34Serfs*50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk, and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts. In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.US National Institutes of Health (NIH) Training 5-T32-GM007748-33 Doris Duke Charitable Foundation 2006087 Fulbright Diabetes UK Fellowship BDA 11/0004348 Broad Institute from Pfizer, Inc. NIH U01 DK085501 U01 DK085524 U01 DK085545 U01 DK085584 Swedish Research Council Dnr 521-2010-3490 Dnr 349-2006-237 European Research Council (ERC) GENETARGET T2D GA269045 ENGAGE 2007-201413 CEED3 2008-223211 Sigrid Juselius Foundation Folkh lsan Research Foundation ERC AdG 293574 Research Council of Norway 197064/V50 KG Jebsen Foundation University of Bergen Western Norway Health Authority Lundbeck Foundation Novo Nordisk Foundation Wellcome Trust WT098017 WT064890 WT090532 WT090367 WT098381 Uppsala University Swedish Research Council and the Swedish Heart- Lung Foundation Academy of Finland 124243 102318 123885 139635 Finnish Heart Foundation Finnish Diabetes Foundation, Tekes 1510/31/06 Commission of the European Community HEALTH-F2-2007-201681 Ministry of Education and Culture of Finland European Commission Framework Programme 6 Integrated Project LSHM-CT-2004-005272 City of Kuopio and Social Insurance Institution of Finland Finnish Foundation for Cardiovascular Disease NIH/NIDDK U01-DK085545 National Heart, Lung, and Blood Institute (NHLBI) National Institute on Minority Health and Health Disparities N01 HC-95170 N01 HC-95171 N01 HC-95172 European Union Seventh Framework Programme, DIAPREPP Swedish Child Diabetes Foundation (Barndiabetesfonden) 5U01DK085526 DK088389 U54HG003067 R01DK072193 R01DK062370 Z01HG000024info:eu-repo/grantAgreement/EC/FP7/20201

    Generation and analysis of context-specific genome-scale metabolic models derived from single-cell RNA-Seq data

    Get PDF
    Single-cell RNA sequencing combined with genome-scale metabolic models (GEMs) has the potential to unravel the differences in metabolism across both cell types and cell states but requires new computational methods. Here, we present a method for generating cell-type-specific genome-scale models from clusters of single-cell RNA-Seq profiles. Specifically, we developed a method to estimate the minimum number of cells required to pool to obtain stable models, a bootstrapping strategy for estimating statistical inference, and a faster version of the task-driven integrative network inference for tissues\ua0algorithm for generating context-specific GEMs. In addition, we evaluated the effect of different RNA-Seq normalization methods on model topology and differences in models generated from single-cell and bulk RNA-Seq data. We applied our methods on data from mouse cortex neurons and cells from the tumor microenvironment of lung cancer and in both cases found that almost every cell subtype had a unique metabolic profile. In addition, our approach was able to detect cancer-associated metabolic differences between cancer cells and healthy cells, showcasing its utility. We also contextualized models from 202 single-cell clusters across 19 human organs using data from Human Protein Atlas and made these available in the web portal Metabolic Atlas, thereby providing a valuable resource to the scientific community. With the ever-increasing availability of single-cell RNA-Seq datasets and continuously improved GEMs, their combination holds promise to become an important approach in the study of human metabolism

    The effect of fructose feeding on intestinal triacylglycerol production and de novo fatty acid synthesis in humans

    Get PDF
    A high fructose intake exacerbates postprandial plasma triacylglycerol (TAG) concentration, an independent risk factor for cardiovascular disease, although it is unclear whether this is due to increased production or impaired clearance of triacylglycerol (TAG)-rich lipoproteins. We determined the in vivo acute effect of fructose on postprandial intestinal and hepatic lipoprotein TAG kinetics and de novo lipogenesis (DNL). Five overweight men were studied twice, 4 weeks apart. They consumed hourly mixed-nutrient drinks that were high-fructose (30% energy) or low-fructose (<2% energy) for 11 hours. Oral 2H2O was administered to measure fasting and postprandial DNL. Postprandial chylomicron (CM)-TAG and very low-density lipoprotein (VLDL)-TAG kinetics were measured with an intravenous bolus of [2H5]-glycerol. CM and VLDL were separated by their apolipoprotein B content using antibodies. Plasma TAG (P<0.005) and VLDL-TAG (P=0.003) were greater, and CM-TAG production rate (PR, P=0.046) and CM-TAG fractional catabolic rate (FCR, P=0.073) lower when high-fructose was consumed, with no differences in VLDL-TAG kinetics. Insulin was lower (P=0.005) and apoB48 (P=0.039), apoB100 (P=0.013) and NEFA (P=0.013) were higher after high-fructose. Postprandial hepatic fractional DNL was higher than intestinal fractional DNL with high-fructose (P=0.043) and low-fructose (P=0.043). Fructose consumption had no effect on the rate of intestinal or hepatic DNL. We provide the first measurement of the rate of intestinal DNL in humans. Lower CM-TAG PR and CM-TAG FCR with high-fructose consumption suggests lower clearance of CM, rather than elevated production, may contribute to elevated plasma TAG, possibly due to lower insulin-mediated stimulation of lipoprotein lipase
    corecore