1,355 research outputs found
Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation
Image segmentation is a fundamental problem in biomedical image analysis.
Recent advances in deep learning have achieved promising results on many
biomedical image segmentation benchmarks. However, due to large variations in
biomedical images (different modalities, image settings, objects, noise, etc),
to utilize deep learning on a new application, it usually needs a new set of
training data. This can incur a great deal of annotation effort and cost,
because only biomedical experts can annotate effectively, and often there are
too many instances in images (e.g., cells) to annotate. In this paper, we aim
to address the following question: With limited effort (e.g., time) for
annotation, what instances should be annotated in order to attain the best
performance? We present a deep active learning framework that combines fully
convolutional network (FCN) and active learning to significantly reduce
annotation effort by making judicious suggestions on the most effective
annotation areas. We utilize uncertainty and similarity information provided by
FCN and formulate a generalized version of the maximum set cover problem to
determine the most representative and uncertain areas for annotation. Extensive
experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node
ultrasound image segmentation dataset show that, using annotation suggestions
by our method, state-of-the-art segmentation performance can be achieved by
using only 50% of training data.Comment: Accepted at MICCAI 201
Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model
Motivated by applications such as viral marketing, the problem of influence
maximization (IM) has been extensively studied in the literature. The goal is
to select a small number of users to adopt an item such that it results in a
large cascade of adoptions by others. Existing works have three key
limitations. (1) They do not account for economic considerations of a user in
buying/adopting items. (2) Most studies on multiple items focus on competition,
with complementary items receiving limited attention. (3) For the network
owner, maximizing social welfare is important to ensure customer loyalty, which
is not addressed in prior work in the IM literature. In this paper, we address
all three limitations and propose a novel model called UIC that combines
utility-driven item adoption with influence propagation over networks. Focusing
on the mutually complementary setting, we formulate the problem of social
welfare maximization in this novel setting. We show that while the objective
function is neither submodular nor supermodular, surprisingly a simple greedy
allocation algorithm achieves a factor of of the optimum
expected social welfare. We develop \textsf{bundleGRD}, a scalable version of
this approximation algorithm, and demonstrate, with comprehensive experiments
on real and synthetic datasets, that it significantly outperforms all
baselines.Comment: 33 page
Replica Placement on Bounded Treewidth Graphs
We consider the replica placement problem: given a graph with clients and
nodes, place replicas on a minimum set of nodes to serve all the clients; each
client is associated with a request and maximum distance that it can travel to
get served and there is a maximum limit (capacity) on the amount of request a
replica can serve. The problem falls under the general framework of capacitated
set covering. It admits an O(\log n)-approximation and it is NP-hard to
approximate within a factor of . We study the problem in terms of
the treewidth of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of
WADS'1
A Characterization of Visibility Graphs for Pseudo-Polygons
In this paper, we give a characterization of the visibility graphs of
pseudo-polygons. We first identify some key combinatorial properties of
pseudo-polygons, and we then give a set of five necessary conditions based off
our identified properties. We then prove that these necessary conditions are
also sufficient via a reduction to a characterization of vertex-edge visibility
graphs given by O'Rourke and Streinu
Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach
In this paper, we study the -forest problem in the model of resource
augmentation. In the -forest problem, given an edge-weighted graph ,
a parameter , and a set of demand pairs , the
objective is to construct a minimum-cost subgraph that connects at least
demands. The problem is hard to approximate---the best-known approximation
ratio is . Furthermore, -forest is as hard to
approximate as the notoriously-hard densest -subgraph problem.
While the -forest problem is hard to approximate in the worst-case, we
show that with the use of resource augmentation, we can efficiently approximate
it up to a constant factor.
First, we restate the problem in terms of the number of demands that are {\em
not} connected. In particular, the objective of the -forest problem can be
viewed as to remove at most demands and find a minimum-cost subgraph that
connects the remaining demands. We use this perspective of the problem to
explain the performance of our algorithm (in terms of the augmentation) in a
more intuitive way.
Specifically, we present a polynomial-time algorithm for the -forest
problem that, for every , removes at most demands and has
cost no more than times the cost of an optimal algorithm
that removes at most demands
Computing Stable Coalitions: Approximation Algorithms for Reward Sharing
Consider a setting where selfish agents are to be assigned to coalitions or
projects from a fixed set P. Each project k is characterized by a valuation
function; v_k(S) is the value generated by a set S of agents working on project
k. We study the following classic problem in this setting: "how should the
agents divide the value that they collectively create?". One traditional
approach in cooperative game theory is to study core stability with the
implicit assumption that there are infinite copies of one project, and agents
can partition themselves into any number of coalitions. In contrast, we
consider a model with a finite number of non-identical projects; this makes
computing both high-welfare solutions and core payments highly non-trivial.
The main contribution of this paper is a black-box mechanism that reduces the
problem of computing a near-optimal core stable solution to the purely
algorithmic problem of welfare maximization; we apply this to compute an
approximately core stable solution that extracts one-fourth of the optimal
social welfare for the class of subadditive valuations. We also show much
stronger results for several popular sub-classes: anonymous, fractionally
subadditive, and submodular valuations, as well as provide new approximation
algorithms for welfare maximization with anonymous functions. Finally, we
establish a connection between our setting and the well-studied simultaneous
auctions with item bidding; we adapt our results to compute approximate pure
Nash equilibria for these auctions.Comment: Under Revie
Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems
The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I', either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletion
Near-optimal asymmetric binary matrix partitions
We study the asymmetric binary matrix partition problem that was recently
introduced by Alon et al. (WINE 2013) to model the impact of asymmetric
information on the revenue of the seller in take-it-or-leave-it sales.
Instances of the problem consist of an binary matrix and a
probability distribution over its columns. A partition scheme
consists of a partition for each row of . The partition acts
as a smoothing operator on row that distributes the expected value of each
partition subset proportionally to all its entries. Given a scheme that
induces a smooth matrix , the partition value is the expected maximum
column entry of . The objective is to find a partition scheme such that
the resulting partition value is maximized. We present a -approximation
algorithm for the case where the probability distribution is uniform and a
-approximation algorithm for non-uniform distributions, significantly
improving results of Alon et al. Although our first algorithm is combinatorial
(and very simple), the analysis is based on linear programming and duality
arguments. In our second result we exploit a nice relation of the problem to
submodular welfare maximization.Comment: 17 page
Unsplittable coverings in the plane
A system of sets forms an {\em -fold covering} of a set if every point
of belongs to at least of its members. A -fold covering is called a
{\em covering}. The problem of splitting multiple coverings into several
coverings was motivated by classical density estimates for {\em sphere
packings} as well as by the {\em planar sensor cover problem}. It has been the
prevailing conjecture for 35 years (settled in many special cases) that for
every plane convex body , there exists a constant such that every
-fold covering of the plane with translates of splits into
coverings. In the present paper, it is proved that this conjecture is false for
the unit disk. The proof can be generalized to construct, for every , an
unsplittable -fold covering of the plane with translates of any open convex
body which has a smooth boundary with everywhere {\em positive curvature}.
Somewhat surprisingly, {\em unbounded} open convex sets do not misbehave,
they satisfy the conjecture: every -fold covering of any region of the plane
by translates of such a set splits into two coverings. To establish this
result, we prove a general coloring theorem for hypergraphs of a special type:
{\em shift-chains}. We also show that there is a constant such that, for
any positive integer , every -fold covering of a region with unit disks
splits into two coverings, provided that every point is covered by {\em at
most} sets
Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs
For a graph , let be the partition function of the
monomer-dimer system defined by , where is the
number of matchings of size in . We consider graphs of bounded degree
and develop a sublinear-time algorithm for estimating at an
arbitrary value within additive error with high
probability. The query complexity of our algorithm does not depend on the size
of and is polynomial in , and we also provide a lower bound
quadratic in for this problem. This is the first analysis of a
sublinear-time approximation algorithm for a # P-complete problem. Our
approach is based on the correlation decay of the Gibbs distribution associated
with . We show that our algorithm approximates the probability
for a vertex to be covered by a matching, sampled according to this Gibbs
distribution, in a near-optimal sublinear time. We extend our results to
approximate the average size and the entropy of such a matching within an
additive error with high probability, where again the query complexity is
polynomial in and the lower bound is quadratic in .
Our algorithms are simple to implement and of practical use when dealing with
massive datasets. Our results extend to other systems where the correlation
decay is known to hold as for the independent set problem up to the critical
activity
- …
