6,420 research outputs found

    Faddeev study of heavy baryon spectroscopy

    Get PDF
    We investigate the structure of heavy baryons containing a charm or a bottom quark. We employ a constituent quark model successful in the description of the baryon-baryon interaction which is consistent with the light baryon spectra. We solve exactly the three-quark problem by means of the Faddeev method in momentum space. Heavy baryon spectrum shows a manifest compromise between perturbative and nonperturbative contributions. The flavor dependence of the one-gluon exchange is analyzed. We assign quantum numbers to some already observed resonances and we predict the first radial and orbital excitations of all states with J=1/2J=1/2 or 3/2. We combine our results with heavy quark symmetry and lowest-order SU(3) symmetry breaking to predict the masses and quantum numbers of six still non-measured ground-state beauty baryons.Comment: 22 pages, 4 figures, 8 tables. Accepted for publication in J. Phys.

    A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw

    Get PDF
    We report on our findings based on the analysis of observations of the Type II-L supernova LSQ13cuw within the framework of currently accepted physical predictions of core-collapse supernova explosions. LSQ13cuw was discovered within a day of explosion, hitherto unprecedented for Type II-L supernovae. This motivated a comparative study of Type II-P and II-L supernovae with relatively well-constrained explosion epochs and rise times to maximum (optical) light. From our sample of twenty such events, we find evidence of a positive correlation between the duration of the rise and the peak brightness. On average, SNe II-L tend to have brighter peak magnitudes and longer rise times than SNe II-P. However, this difference is clearest only at the extreme ends of the rise time versus peak brightness relation. Using two different analytical models, we performed a parameter study to investigate the physical parameters that control the rise time behaviour. In general, the models qualitatively reproduce aspects of the observed trends. We find that the brightness of the optical peak increases for larger progenitor radii and explosion energies, and decreases for larger masses. The dependence of the rise time on mass and explosion energy is smaller than the dependence on the progenitor radius. We find no evidence that the progenitors of SNe II-L have significantly smaller radii than those of SNe II-P.Comment: 19 pages, 10 figures, accepted by A&

    Early ultraviolet emission in the Type Ia supernova LSQ12gdj: No evidence for ongoing shock interaction

    Get PDF
    We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude MB=19.8M_B = -19.8, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 \AA) light curve out to 45 days past BB-band maximum light. We estimate that LSQ12gdj produced 0.96±0.070.96 \pm 0.07 MM_\odot of 56^{56}Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 \AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 \AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdj's luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius <1013< 10^{13} cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.Comment: 18 pages, 10 figures, accepted to MNRAS; v2 accepted version. Spectra available on WISEReP (http://www.weizmann.ac.il/astrophysics/wiserep/). Natural-system photometry and bolometric light curve available as online tables in MNRAS versio

    Photon polarization in radiative B decays

    Full text link
    We study decay distributions in B -> K pi pi gamma, combining contributions from several overlapping resonances in a K pi pi mass range near 1400 MeV, (1^+) K_1(1400), (2^+) K^*_2(1430) and (1^-) K^*(1410). A method is proposed for using these distributions to determine a photon polarization parameter in the effective radiative weak Hamiltonian. This parameter is measured through an up-down asymmetry of the photon direction relative to the K pi pi decay plane. We calculate a dominant up-down asymmetry of 0.33 +- 0.05 from the K1(1400) resonance, which can be measured with about 10^8 B B-bar pairs, thus providing a new test for the Standard Model and a probe for some of its extensions.Comment: 22 pages, 3 figures, version to appear in Phys. Rev.

    Measuring cosmic bulk flows with Type Ia Supernovae from the Nearby Supernova Factory

    Get PDF
    Context. Our Local Group of galaxies appears to be moving relative to the cosmic microwave background with the source of the peculiar motion still uncertain. While in the past this has been studied mostly using galaxies as distance indicators, the weight of type Ia supernovae (SNe Ia) has increased recently with the continuously improving statistics of available low-redshift supernovae. Aims. We measured the bulk flow in the nearby universe (0.015<z<0.10.015 < z < 0.1) using 117 SNe Ia observed by the Nearby Supernova Factory, as well as the Union2 compilation of SN Ia data already in the literature. Methods. The bulk flow velocity was determined from SN data binned in redshift shells by including a coherent motion (dipole) in a cosmological fit. Additionally, a method of spatially smoothing the Hubble residuals was used to verify the results of the dipole fit. To constrain the location and mass of a potential mass concentration (e.g., the Shapley supercluster) responsible for the peculiar motion, we fit a Hubble law modified by adding an additional mass concentration. Results. The analysis shows a bulk flow that is consistent with the direction of the CMB dipole up to z0.06z \sim 0.06, thereby doubling the volume over which conventional distance measures are sensitive to a bulk flow. We see no significant turnover behind the center of the Shapley supercluster. A simple attractor model in the proximity of the Shapley supercluster is only marginally consistent with our data, suggesting the need for another, more distant source. In the redshift shell 0.06<z<0.10.06 < z < 0.1, we constrain the bulk flow velocity to <240 km s1< 240~\textrm{km s}^{-1} (68% confidence level) for the direction of the CMB dipole, in contradiction to recent claims of the existence of a large-amplitude dark flow.Comment: 12 pages, 5 figures, added corrigendum (http://adsabs.harvard.edu/abs/2015A%26A...578C...1F

    Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    Full text link
    Kim et al. (2013) [K13] introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013±0.0310.013\pm 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at 1σ\ll 1\sigma, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045±0.0260.045\pm 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: Steps at >2σ>2\sigma significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1)x(1) and x(2)x(2) light-curve parameters. x(1)x(1) affects the light-curve width and color around peak (similar to the Δm15\Delta m_{15} and stretch parameters), and x(2)x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN~Ia diversity arising from progenitor stellar evolution.Comment: 17 pages, 6 figures. Accepted by Astrophysical Journa

    Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H{\alpha}

    Get PDF
    (Abridged) We study the host galaxy regions in close proximity to Type Ia supernovae (SNe Ia) to analyze relations between the properties of SN Ia events and environments most similar to where their progenitors formed. We focus on local H\alpha\ emission as an indicator of young environments. The Nearby Supernova Factory has obtained flux-calibrated spectral timeseries for SNe Ia using integral field spectroscopy, allowing the simultaneous measurement of the SN and its immediate vicinity. For 89 SNe Ia we measure H\alpha\ emission tracing ongoing star formation within a 1 kpc radius around each SN. This constitutes the first direct study of the local environment for a large sample of SNe Ia also having accurate luminosity, color and stretch measurements. We find that SNe Ia with local H\alpha\ emission are redder by 0.036+/-0.017 mag, and that the previously-noted correlation between stretch and host mass is entirely driven by the SNe Ia coming from passive regions. Most importantly, the mean standardized brightness for SNe Ia with local H\alpha\ emission is 0.094+/-0.031 mag fainter than for those without. This offset arises from a bimodal structure in the Hubble residuals, that also explains the previously-known host-mass bias. We combine this bimodality with the cosmic star-formation rate to predict changes with redshift in the mean SN Ia brightness and the host-mass bias. This change is confirmed using high-redshift SNe Ia from the literature. These environmental dependences point to remaining systematic errors in SNe Ia standardization. The observed brightness offset is predicted to cause a significant bias in measurements of the dark energy equation of state. Recognition of these effects offers new opportunities to improve SNe Ia as cosmological probes - e.g. SNe Ia having local H\alpha\ emission are more homogeneous, having a brightness dispersion of 0.105+/-0.012 mag.Comment: accepted for publication in Section 3. Cosmology of A&A (The official date of acceptance is 30/08/2013

    The Extinction Properties of and Distance to the Highly Reddened Type Ia Supernova SN 2012cu

    Get PDF
    Correction of Type Ia Supernova brightnesses for extinction by dust has proven to be a vexing problem. Here we study the dust foreground to the highly reddened SN 2012cu, which is projected onto a dust lane in the galaxy NGC 4772. The analysis is based on multi-epoch, spectrophotometric observations spanning 3,300 - 9,200 {\AA}, obtained by the Nearby Supernova Factory. Phase-matched comparison of the spectroscopically twinned SN 2012cu and SN 2011fe across 10 epochs results in the best-fit color excess of (E(B-V), RMS) = (1.00, 0.03) and total-to-selective extinction ratio of (RV , RMS) = (2.95, 0.08) toward SN 2012cu within its host galaxy. We further identify several diffuse interstellar bands, and compare the 5780 {\AA} band with the dust-to-band ratio for the Milky Way. Overall, we find the foreground dust-extinction properties for SN 2012cu to be consistent with those of the Milky Way. Furthermore we find no evidence for significant time variation in any of these extinction tracers. We also compare the dust extinction curve models of Cardelli et al. (1989), O'Donnell (1994), and Fitzpatrick (1999), and find the predictions of Fitzpatrick (1999) fit SN 2012cu the best. Finally, the distance to NGC4772, the host of SN 2012cu, at a redshift of z = 0.0035, often assigned to the Virgo Southern Extension, is determined to be 16.6±\pm1.1 Mpc. We compare this result with distance measurements in the literature.Comment: 48 pages, 13 figures. Accepted for publication in The Astrophysical Journal. The spectral time series data presented in this article can be found at http://snfactory.lbl.gov/snf/data

    Search for CP Violation in the Decays D0KS0P0D^0\rightarrow K^0_S P^0

    Full text link
    We have searched for CP violation in the decays D0KS0P0D^0\rightarrow K^0_S P^0 where P0P^0 denotes a neutral pseudo-scalar meson which is either a π0\pi^0, η\eta, or η\eta' using KEKB asymmetric-energy e+ee^+e^- collision data corresponding to an integrated luminosity of 791 fb1^{-1} collected with the Belle detector. No evidence of significant CP violation is observed. We report the most precise CP asymmetry measurement in the decay D0KS0π0D^0\rightarrow K^0_S\pi^0 to date: ACPD0KS0π0=(0.28±0.19±0.10)A_{CP}^{D^0\rightarrow K^0_S\pi^0}=(-0.28\pm0.19\pm0.10)%. We also report the first measurements of CP asymmetries in the decays D0KS0ηD^0\rightarrow K^0_S\eta and D0KS0ηD^0\rightarrow K^0_S\eta': ACPD0KS0η=(+0.54±0.51±0.16)A_{CP}^{D^0\rightarrow K^0_S\eta}=(+0.54\pm0.51\pm0.16)% and ACPD0KS0η=(+0.98±0.67±0.14)A_{CP}^{D^0\rightarrow K^0_S\eta'}=(+0.98\pm0.67\pm0.14)%, respectively
    corecore