1,010 research outputs found

    Compact single-shot electro-optic detection system for THz pulses with femtosecond time resolution at MHz repetition rates

    Full text link
    Electro-optical detection has proven to be a valuable technique to study temporal profiles of THz pulses with pulse durations down to femtoseconds. As the Coulomb field around a relativistic electron bunch resembles the current profile, electro-optical detection can be exploited for non-invasive bunch length measurements at accelerators. We have developed a very compact and robust electro-optical detection system based on spectral decoding for bunch length monitoring at the European XFEL with single-shot resolution better than 200~fs. Apart from the GaP crystal and the corresponding laser optics at the electron beamline, all components are housed in 19\" chassis for rack mount and remote operation inside the accelerator tunnel. An advanced laser synchronization scheme based on radio-frequency down-conversion has been developed for locking a custom-made Yb-fiber laser to the radio-frequency of the European XFEL accelerator. In order to cope with the high bunch repetition rate of the superconducting accelerator, a novel linear array detector (KALYPSO) has been employed for spectral measurements of the Yb-fiber laser pulses at frame rates of up to 2.26~MHz. In this paper, we describe all sub-systems of the electro-optical detection system as well as the measurement procedure in detail, and discuss first measurement results of longitudinal bunch profiles of around 400~fs (rms) with an arrival-time jitter of 35~fs (rms)

    Tuning the Level of Concurrency in Software Transactional Memory: An Overview of Recent Analytical, Machine Learning and Mixed Approaches

    Get PDF
    Synchronization transparency offered by Software Transactional Memory (STM) must not come at the expense of run-time efficiency, thus demanding from the STM-designer the inclusion of mechanisms properly oriented to performance and other quality indexes. Particularly, one core issue to cope with in STM is related to exploiting parallelism while also avoiding thrashing phenomena due to excessive transaction rollbacks, caused by excessively high levels of contention on logical resources, namely concurrently accessed data portions. A means to address run-time efficiency consists in dynamically determining the best-suited level of concurrency (number of threads) to be employed for running the application (or specific application phases) on top of the STM layer. For too low levels of concurrency, parallelism can be hampered. Conversely, over-dimensioning the concurrency level may give rise to the aforementioned thrashing phenomena caused by excessive data contention—an aspect which has reflections also on the side of reduced energy-efficiency. In this chapter we overview a set of recent techniques aimed at building “application-specific” performance models that can be exploited to dynamically tune the level of concurrency to the best-suited value. Although they share some base concepts while modeling the system performance vs the degree of concurrency, these techniques rely on disparate methods, such as machine learning or analytic methods (or combinations of the two), and achieve different tradeoffs in terms of the relation between the precision of the performance model and the latency for model instantiation. Implications of the different tradeoffs in real-life scenarios are also discussed

    Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"

    Full text link
    Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.Comment: 2 pages, 1 postscript figure, comment on Rauch et al, PRL 83,4955 (1999

    Atom laser dynamics in a tight-waveguide

    Full text link
    We study the transient dynamics that arise during the formation of an atom laser beam in a tight waveguide. During the time evolution the density profile develops a series of wiggles which are related to the diffraction in time phenomenon. The apodization of matter waves, which relies on the use of smooth aperture functions, allows to suppress such oscillations in a time interval, after which there is a revival of the diffraction in time. The revival time scale is directly related to the inverse of the harmonic trap frequency for the atom reservoir.Comment: 6 pages, 5 figures, to be published in the Proceedings of the 395th WE-Heraeus Seminar on "Time Dependent Phenomena in Quantum Mechanics ", organized by T. Kramer and M. Kleber (Blaubeuren, Germany, September 2007

    Clustering and Sharing Incentives in BitTorrent Systems

    Get PDF
    Peer-to-peer protocols play an increasingly instrumental role in Internet content distribution. Consequently, it is important to gain a full understanding of how these protocols behave in practice and how their parameters impact overall performance. We present the first experimental investigation of the peer selection strategy of the popular BitTorrent protocol in an instrumented private torrent. By observing the decisions of more than 40 nodes, we validate three BitTorrent properties that, though widely believed to hold, have not been demonstrated experimentally. These include the clustering of similar-bandwidth peers, the effectiveness of BitTorrent's sharing incentives, and the peers' high average upload utilization. In addition, our results show that BitTorrent's new choking algorithm in seed state provides uniform service to all peers, and that an underprovisioned initial seed leads to the absence of peer clustering and less effective sharing incentives. Based on our observations, we provide guidelines for seed provisioning by content providers, and discuss a tracker protocol extension that addresses an identified limitation of the protocol

    Space-Time Approach to Scattering from Many Body Systems

    Get PDF
    We present scattering from many body systems in a new light. In place of the usual van Hove treatment, (applicable to a wide range of scattering processes using both photons and massive particles) based on plane waves, we calculate the scattering amplitude as a space-time integral over the scattering sample for an incident wave characterized by its correlation function which results from the shaping of the wave field by the apparatus. Instrument resolution effects - seen as due to the loss of correlation caused by the path differences in the different arms of the instrument are automatically included and analytic forms of the resolution function for different instruments are obtained. The intersection of the moving correlation volumes (those regions where the correlation functions are significant) associated with the different elements of the apparatus determines the maximum correlation lengths (times) that can be observed in a sample, and hence, the momentum (energy) resolution of the measurement. This geometrical picture of moving correlation volumes derived by our technique shows how the interaction of the scatterer with the wave field shaped by the apparatus proceeds in space and time. Matching of the correlation volumes so as to maximize the intersection region yields a transparent, graphical method of instrument design. PACS: 03.65.Nk, 3.80 +r, 03.75, 61.12.BComment: Latex document with 6 fig

    Matter wave pulses characteristics

    Full text link
    We study the properties of quantum single-particle wave pulses created by sharp-edged or apodized shutters with single or periodic openings. In particular, we examine the visibility of diffraction fringes depending on evolution time and temperature; the purity of the state depending on the opening-time window; the accuracy of a simplified description which uses ``source'' boundary conditions instead of solving an initial value problem; and the effects of apodization on the energy width.Comment: 11 pages, 11 figure

    Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities

    Full text link
    We present a comprehensive study of second-order nonlinear difference frequency generation in triply resonant cavities using a theoretical framework based on coupled-mode theory. We show that optimal quantum-limited conversion efficiency can be achieved at any pump power when the powers at the pump and idler frequencies satisfy a critical relationship. We demonstrate the existence of a broad parameter range in which all triply-resonant DFG processes exhibit monostable conversion. We also demonstrate the existence of a geometry-dependent bistable region.Comment: 10 pages, 3 figure

    Electromagnetic energy penetration in the self-induced transparency regime of relativistic laser-plasma interactions

    Get PDF
    Two scenarios for the penetration of relativistically intense laser radiation into an overdense plasma, accessible by self-induced transparency, are presented. For supercritical densities less than 1.5 times the critical one, penetration of laser energy occurs by soliton-like structures moving into the plasma. At higher background densities laser light penetrates over a finite length only, that increases with the incident intensity. In this regime plasma-field structures represent alternating electron layers separated by about half a wavelength by depleted regions.Comment: 9 pages, 4 figures, submitted for publication to PR
    corecore