23,448 research outputs found

    Evaluation of selected strapdown inertial instruments and pulse torque loops, volume 1

    Get PDF
    Design, operational and performance variations between ternary, binary and forced-binary pulse torque loops are presented. A fill-in binary loop which combines the constant power advantage of binary with the low sampling error of ternary is also discussed. The effects of different output-axis supports on the performance of a single-degree-of-freedom, floated gyroscope under a strapdown environment are illustrated. Three types of output-axis supports are discussed: pivot-dithered jewel, ball bearing and electromagnetic. A test evaluation on a Kearfott 2544 single-degree-of-freedom, strapdown gyroscope operating with a pulse torque loop, under constant rates and angular oscillatory inputs is described and the results presented. Contributions of the gyroscope's torque generator and the torque-to-balance electronics on scale factor variation with rate are illustrated for a SDF 18 IRIG Mod-B strapdown gyroscope operating with various pulse rebalance loops. Also discussed are methods of reducing this scale factor variation with rate by adjusting the tuning network which shunts the torque coil. A simplified analysis illustrating the principles of operation of the Teledyne two-degree-of-freedom, elastically-supported, tuned gyroscope and the results of a static and constant rate test evaluation of that instrument are presented

    Lunar Resource Assessment: an Industry Perspective

    Get PDF
    The goals of the U.S. space program are to return to the Moon, establish a base, and continue onward to Mars. To accomplish this in a relatively short time frame and to avoid the high costs of transporting materials from the Earth, resources on the Moon will need to be mined. Oxygen will be one of the most important resources, to be used as a rocket propellant and for life support. Ilmenite and lunar regolith have both been considered as ores for the production of oxygen. Resource production on the Moon will be a very important part of the U.S. space program. To produce resources we must explore to identify the location of ore or feedback and calculate the surface and underground reserves. Preliminary resource production tests will provide the information that can be used in final plant design. Bechtel Corporation's experience in terrestrial engineering and construction has led to an interest in lunar resource assessment leading to the construction of production facilities on the Moon. There is an intimate link between adequate resource assessment to define feedstock quantity and quality, material processing requirements, and the successful production of lunar oxygen. Although lunar resource assessment is often viewed as a research process, the engineering and production aspects are very important to consider. Resource production often requires the acquisition of different types, scales, or resolutions of data than that needed for research, and it is needed early in the exploration process. An adequate assessment of the grade, areal extent, and depth distribution of the resources is a prerequisite to mining. The need for a satisfactory resource exploration program using remote sensing techniques, field sampling, and chemical and physical analysis is emphasized. These data can be used to define the ore for oxygen production and the mining, processing facilities, and equipment required

    Nonequilibrium quantum phase transition in itinerant electron systems

    Full text link
    We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a non-zero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.Comment: Final version as accepted to Phys. Rev. Let

    Bayesian inference for orbital eccentricities

    Full text link
    Highest posterior density intervals (HPDI's) are derived for the true eccentricities of spectroscopic binaries with measured values e ~ 0. These yield upper limits when e is below the detection threshold e_th and seamlessly transform to upper and lower bounds when e > e_th. In the main text, HPDI's are computed with an informative eccentricity prior representing orbital decay due to tidal dissipation. In an appendix, the corresponding HPDI's are computed with a uniform prior and are the basis for a revised version of the Lucy-Sweeney test, with the previous outcome e = 0 now replaced by an upper limit. Sampling experiments with known prior confirm the validity of the HPDI's.Comment: 7 pages, 6 figures. Error in terminology corrected. Results unchanged. Accepted by Astronomy & Astrophysic

    State Higher Education Spending and the Tax Revolt

    Get PDF
    Public effort in support of higher education – measured as state funding per thousand dollars of personal income – has declined by thirty percent since the late 1970s. During this time period many states implemented Tax and Expenditure Limits and/or supermajority requirements for tax increases. We use a forty-eight state panel from 1961 to 2001 to evaluate the effect of these tax revolt institutions for state effort on behalf of higher education. These provisions have a statistically significant and economically large impact on the timing and magnitude of this decline in state effort. An understanding of the fiscal environment caused by these provisions is critical for the future of state-supported higher education.State higher education spending, tax revolt, Tax and Expenditure Limits

    Lattice dynamics and reduced thermal conductivity of filled skutterudites

    Full text link
    The great reduction in thermal conductivity of skutterudites upon filling the ``void'' sites with Rare Earth (RE) ions is key to their favorable thermoelectric properties but remains to be understood. Using lattice dynamic models based on first principles calculations, we address the most popular microscopic mechanism, reduction via rattling ions. The model withstands inelastic neutron scattering and specific heat measurements, and refutes hypotheses of an anharmonic RE potential and of two distinct localized RE vibrations of disparate frequencies. It does indicate a strong hybridization between bare La vibrations and certain Sb-like phonon branches, suggesting anharmonic scattering by harmonic RE motions as an important mechanism for suppression of heat conductivity.Comment: modified version resubmitted to PRB. Results unchanged, text changed substantiall

    Nearly optimal solutions for the Chow Parameters Problem and low-weight approximation of halfspaces

    Get PDF
    The \emph{Chow parameters} of a Boolean function f:{1,1}n{1,1}f: \{-1,1\}^n \to \{-1,1\} are its n+1n+1 degree-0 and degree-1 Fourier coefficients. It has been known since 1961 (Chow, Tannenbaum) that the (exact values of the) Chow parameters of any linear threshold function ff uniquely specify ff within the space of all Boolean functions, but until recently (O'Donnell and Servedio) nothing was known about efficient algorithms for \emph{reconstructing} ff (exactly or approximately) from exact or approximate values of its Chow parameters. We refer to this reconstruction problem as the \emph{Chow Parameters Problem.} Our main result is a new algorithm for the Chow Parameters Problem which, given (sufficiently accurate approximations to) the Chow parameters of any linear threshold function ff, runs in time \tilde{O}(n^2)\cdot (1/\eps)^{O(\log^2(1/\eps))} and with high probability outputs a representation of an LTF ff' that is \eps-close to ff. The only previous algorithm (O'Donnell and Servedio) had running time \poly(n) \cdot 2^{2^{\tilde{O}(1/\eps^2)}}. As a byproduct of our approach, we show that for any linear threshold function ff over {1,1}n\{-1,1\}^n, there is a linear threshold function ff' which is \eps-close to ff and has all weights that are integers at most \sqrt{n} \cdot (1/\eps)^{O(\log^2(1/\eps))}. This significantly improves the best previous result of Diakonikolas and Servedio which gave a \poly(n) \cdot 2^{\tilde{O}(1/\eps^{2/3})} weight bound, and is close to the known lower bound of max{n,\max\{\sqrt{n}, (1/\eps)^{\Omega(\log \log (1/\eps))}\} (Goldberg, Servedio). Our techniques also yield improved algorithms for related problems in learning theory

    Projective measurement in nuclear magnetic resonance

    Get PDF
    It is demonstrated that nuclear magnetic resonance experiments using pseudopure spin states can give possible outcomes of projective quantum measurement and probabilities of such outcomes. The physical system is a cluster of six dipolar-coupled nuclear spins of benzene in a liquid-crystalline matrix. For this system with the maximum total spin S=3, the results of measuring SXS_X are presented for the cases when the state of the system is one of the eigenstates of SZS_Z.Comment: 9 pages incluing 3 figure

    Rectification in one--dimensional electronic systems

    Full text link
    Asymmetric current--voltage (I(V)I(V)) curves, known as the diode or rectification effect, in one--dimensional electronic conductors can have their origin from scattering off a single asymmetric impurity in the system. We investigate this effect in the framework of the Tomonaga--Luttinger model for electrons with spin. We show that electron interactions strongly enhance the diode effect and lead to a pronounced current rectification even if the impurity potential is weak. For strongly interacting electrons and not too small voltages, the rectification current, Ir=[I(V)+I(V)]/2I_r = [I(V)+I(-V)]/2, measuring the asymmetry in the current--voltage curve, has a power--law dependence on the voltage with a negative exponent, IrVzI_r \sim V^{-|z|}, leading to a bump in the current--voltage curve.Comment: 9 pages; 3 figure
    corecore