2,062 research outputs found
Recommended from our members
Towards the sustainability of road transport through the introduction of AV technology
The paper investigates the potential for Level 2 autonomous vehicle (AV) technology to improve four prevailing sustainability issues specifically on highways: high congestion levels, increasing accident rates, high CO_2 emissions and poor journey time reliability. Co-operative Adaptive Cruise Control (CACC) shows potential to achieve high volume co-operative driving on highways by controlling these parameters and forming vehicle platoons. Accident rates, CO_2 emissions and journey times can be reduced as a result. The risks of platooning are discussed and a minimum safe platoon headway is established to mitigate the risk of vehicle platoon collisions. This headway is applied to a real highway case study demonstrating the potential to increase notional highway design capacity from 3,600 vehicles per hour (vph) to 9,213 vph, with significant sustainability improvements possible. Recommendations are made to complete a number of policy implementation and technology development tasks aimed to create the best chance of achieving the identified sustainability benefits within a 20 year timeframe.This is the author accepted manuscript. The final version is available from ICE Publishing via https://doi.org/10.1680/ensu.14.0005
Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors
A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and
non-evaporable getter pumps has been developed and used to create a cold atomic
sample in a chamber that operates with only passive vacuum pumps. The ion-mass
spectrum of evaporated gases from the alkali metal dispenser has been recorded
as a function of dispenser current. The efficacy of the non-evaporable getter
pumps in promoting and maintaining vacuum has been characterized by observation
of the Rb vapor optical absorption on the D2 transition at 780 nm and vacuum
chamber pressure rate of rise tests. We have demonstrated a sample of
laser-cooled Rb atoms in this chamber when isolated and operating without
active vacuum pumps
Constraints on Early Nucleosynthesis from the Abundance Pattern of a Damped Ly-alpha System at z = 2.626
We have investigated chemical evolution in the young universe by analysing
the detailed chemical enrichment pattern of a metal-rich galaxy at high
redshift. The recent detection of over 20 elements in the gas-phase of a damped
Lyman-alpha absorber (DLA) at z = 2.626 represents an exciting new avenue for
exploring early nucleosynthesis. Given a strict upper age of ~2.5 Gyr and a
gas-phase metallicity about one third solar, we have shown the DLA abundance
pattern to be consistent with the predictions of a chemical evolution model in
which the interstellar enrichment is dominated by massive stars with a small
contribution from Type Ia supernovae. Discrepancies between the empirical data
and the models are used to highlight outstanding issues in nucleosynthesis
theory, including a tendency for Type II supernovae models to overestimate the
magnitude of the "odd-even" effect at subsolar metallicities. Our results
suggest a possible need for supplemental sources of magnesium and zinc, beyond
that provided by massive stars.Comment: 12 pages, 7 figs. Accepted for publication in ApJ (The Astrophysical
Journal
A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states
We prove that universal quantum computation is possible using only (i) the
physically natural measurement on two qubits which distinguishes the singlet
from the triplet subspace, and (ii) qubits prepared in almost any three
different (potentially highly mixed) states. In some sense this measurement is
a `more universal' dynamical element than a universal 2-qubit unitary gate,
since the latter must be supplemented by measurement. Because of the rotational
invariance of the measurement used, our scheme is robust to collective
decoherence in a manner very different to previous proposals - in effect it is
only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous
middle name [12
The ecology of herbivore-induced silicon defences in grasses
Silicon as a defence against herbivory in grasses has gained increasing recognition and has now been studied in a wide range of species, at scales from individual plants in pots to plant communities in the field. The impacts of these defences have been assessed on herbivores ranging from insects to rodents to ungulates. Here, we review current knowledge of silicon mediation of plant-herbivore interactions in an ecological context. The production of silicon defences by grasses is affected by both abiotic and biotic factors and by their interactions. Climate, soil type and water availability all influence levels of silicon uptake, as does plant phenology and previous herbivory. The type of defoliation matters and artificial clipping does not appear to have the same impact on silicon defence induction as herbivory which includes the presence of saliva. Induction of silicon defences has been demonstrated to require a threshold level of damage, both in the laboratory and in the field. In recent studies of vole-plant interactions, the patterns of induction were found to be quantitatively similar in glasshouse compared with field experiments, in terms of both the threshold required for induction and timing of the induction response. The impacts of silicon defences differ between different classes of herbivore, possibly reflecting differences in body size, feeding behaviour and digestive physiology. General patterns are hard to discern however, and a greater number of studies on wild mammalian herbivores are required to elucidate these, particularly with an inclusion of major groups for which there are currently no data, one such example being marsupials. We highlight new research areas to address what still remains unclear about the role of silicon as a plant defence, particularly in relation to plant-herbivore interactions in the field, where the effects of grazing on defence induction are harder to measure. We discuss the obstacles inherent in scaling up laboratory work to landscape-scale studies, the most ecologically relevant but most difficult to carry out, which is the next challenge in silicon ecology
Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions
Aims. We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in support of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory.
Methods. We made use of a suite of L* discs, realised with and without "enhanced" feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z similar to 2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system.
Results. The "enhanced" feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively "flat" and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks at [O/Fe] = -0.05 and +0.05 (for stars with [Fe/H] > -1), consistent with our earlier work on dwarf discs.
Conclusions. Our results with "enhanced" feedback are inconsistent with our earlier generation of simulations realised with "conservative" feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes
Inclusive One Jet Production With Multiple Interactions in the Regge Limit of pQCD
DIS on a two nucleon system in the regge limit is considered. In this
framework a review is given of a pQCD approach for the computation of the
corrections to the inclusive one jet production cross section at finite number
of colors and discuss the general results.Comment: 4 pages, latex, aicproc format, Contribution to the proceedings of
"Diffraction 2008", 9-14 Sep. 2008, La Londe-les-Maures, Franc
Measurement of the Far Infrared Magneto-Conductivity Tensor of Superconducting YBaCuO Thin Films
We report measurements of the far infrared transmission of superconducting
YBaCuO thin films from 5 cm to 200 cm in
fields up to 14. A Kramers-Kronig analysis of the magneto-transmission
spectrum yields the magneto-conductivity tensor. The result shows that the
magneto-conductivity of YBaCuO is dominated by three
terms: a London term, a low frequency Lorentzian ( 3 cm) of width 10 cm and a finite frequency Lorentzian of
width 17 cm at 24 cm in the hole
cyclotron resonance active mode of circular polarization.\\Comment: Revised LaTex file (12 pages) + 4 Postscript figures, uuencoded. In
response to referees' comments, we refined the paper a lot; we encourage you
to download this revised versio
- …
