716 research outputs found
Solitonic Excitations in Linearly Coherent Channels of Bilayer Quantum Hall Stripes
In some range of interlayer distances, the ground state of the
two-dimensional electron gas at filling factor nu =4N+1 with N=0,1,2,... is a
coherent stripe phase in the Hartree-Fock approximation. This phase has
one-dimensional coherent channels that support charged excitations in the form
of pseudospin solitons. In this work, we compute the transport gap of the
coherent striped phase due to the creation of soliton-antisoliton pairs using a
supercell microscopic unrestricted Hartree-Fock approach. We study this gap as
a function of interlayer distance and tunneling amplitude. Our calculations
confirm that the soliton-antisoliton excitation energy is lower than the
corresponding Hartree-Fock electron-hole pair energy. We compare our results
with estimates of the transport gap obtained from a field-theoretic model valid
in the limit of slowly varying pseudospin textures.Comment: 15 pages, 8 figure
Ultrasonic characterization of microstructure in powder metal alloy
The ultrasonic wave propagation characteristics were measured for IN-100, a powder metallurgy alloy used for aircraft engine components. This material was as a model system for testing the feasibility of characterizing the microstructure of a variety of inhomogeneous media including powder metals, ceramics, castings and components. The data were obtained for a frequency range from about 2 to 20 MHz and were statistically averaged over numerous volume elements of the samples. Micrographical examination provided size and number distributions for grain and pore structure. The results showed that the predominant source for the ultrasonic attenuation and backscatter was a dense (approx. 100/cubic mm) distribution of small micropores (approx. 10 micron radius). Two samples with different micropore densities were studied in detail to test the feasibility of calculating from observed microstructural parameters the frequency dependence of the microstructural backscatter in the regime for which the wavelength is much larger than the size of the individual scattering centers. Excellent agreement was found between predicted and observed values so as to demonstrate the feasibility of solving the forward problem. The results suggest a way towards the nondestructive detection and characterization of anomalous distributions of micropores when conventional ultrasonic imaging is difficult. The findings are potentially significant toward the application of the early detection of porosity during the materials fabrication process and after manufacturing of potential sites for stress induced void coalescence leading to crack initiation and subsequent failure
Dynamical matrix of two-dimensional electron crystals
In a quantizing magnetic field, the two-dimensional electron (2DEG) gas has a
rich phase diagram with broken translational symmetry phases such as Wigner,
bubble, and stripe crystals. In this paper, we derive a method to get the
dynamical matrix of these crystals from a calculation of the density response
function performed in the Generalized Random Phase Approximation (GRPA). We
discuss the validity of our method by comparing the dynamical matrix calculated
from the GRPA with that obtained from standard elasticity theory with the
elastic coefficients obtained from a calculation of the deformation energy of
the crystal.Comment: Revised version published in Phys. Rev. B. 12 pages with 11
postscripts figure
Magnus Force on Quantum Hall Skyrmions and Vortices
We have discussed here the Magnus force acting on the vortices and skyrmions
in the quantum Hall systems. We have found that it is generated by the
chirality of the system which is associated with the Berry phase and is same
for both the cases.Comment: 5 page
Evidence of Skyrmion excitations about in n-Modulation Doped Single Quantum Wells by Inter-band Optical Transmission
We observe a dramatic reduction in the degree of spin-polarization of a
two-dimensional electron gas in a magnetic field when the Fermi energy moves
off the mid-point of the spin-gap of the lowest Landau level, . This
rapid decay of spin alignment to an unpolarized state occurs over small changes
to both higher and lower magnetic field. The degree of electron spin
polarization as a function of is measured through the magneto-absorption
spectra which distinguish the occupancy of the two electron spin states. The
data provide experimental evidence for the presence of Skyrmion excitations
where exchange energy dominates Zeeman energy in the integer quantum Hall
regime at
Commensurate-incommensurate transitions of quantum Hall stripe states in double-quantum-well systems
In higher Landau levels (N>0) and around filling factors nu =4N+1, a
two-dimensional electron gas in a double-quantum-well system supports a stripe
groundstate in which the electron density in each well is spatially modulated.
When a parallel magnetic field is added in the plane of the wells, tunneling
between the wells acts as a spatially rotating effective Zeeman field coupled
to the ``pseudospins'' describing the well index of the electron states. For
small parallel fields, these pseudospins follow this rotation, but at larger
fields they do not, and a commensurate-incommensurate transition results.
Working in the Hartree-Fock approximation, we show that the combination of
stripes and commensuration in this system leads to a very rich phase diagram.
The parallel magnetic field is responsible for oscillations in the tunneling
matrix element that induce a complex sequence of transitions between
commensurate and incommensurate liquid or stripe states. The homogeneous and
stripe states we find can be distinguished by their collective excitations and
tunneling I-V, which we compute within the time-dependent Hartree-Fock
approximation.Comment: 23 pages including 8 eps figure
Topological defects and Goldstone excitations in domain walls between ferromagnetic quantum Hall effect liquids
It is shown that the low-energy spectrum of a ferromagnetic quantum Hall
effect liquid in a system with a multi-domain structure generated by an
inhomogeneous bare Zeeman splitting is formed by excitations
localized at the walls between domains. For a step-like , the
domain wall spectrum includes a spin-wave with a linear dispersion and a small
gap due to spin-orbit coupling, and a low-energy topological defects. The
latter are charged and may dominate in the transport under conditions that the
percolation through the network of domain walls is provided.Comment: 4 pages, 1 fi
Sozialstaat und Migration: empirische Evidenz und wirtschaftspolitische Implikationen für Deutschland
Fractional Quantum Hall States in Narrow Channels
A model system is considered where two dimensional electrons are confined by
a harmonic potential in one direction, and are free in the other direction.
Ground state in strong magnetic fields is investigated through numerical
diagonalization of the Hamiltonian. It is shown that the fractional quantum
Hall states are realized even in the presence of the external potential under
suitable conditions, and a phase diagram is obtained.Comment: 8 pages, 2 figures (not included
- …
