109 research outputs found

    Функціональні зв'язки між ефектами води Нафтуся на канальцеву секреторно-транспортну та імунну системи щурів. Повідомлення 2: Канальцева секреція і параметри спленоцитограми та гемолімфоаденоцитограми

    Get PDF
    В рамках концепции об общности механизмов функционирования канальцевой секреторно-транспортной и фагоцитарно-лимфоидной систем выявлены существенные связи между скоростью почечной канальцевой секреции и параметрами фагоцитоза, лейкоцитограммы крови, стеноцитогаммы и гемолимфоаденоцитограммы крыс в условиях курсового напаивания их водой Нафтуся per se и в сочетании с цитостатиком или анаболиком.It is shown that increase of canalicular secretion in rats becaused by drinking of water Naftussya accompanied increase massa of haemolymphatic node and contents in its of endothelio-, reticulo-, lymphocytes, eosinophyles and macrophages, blood level lymphocytes, monocytes and segmental nucleare neutrophyles but decrease activity and completion of phagocytose of neutrophyles and level of lymphoblastes in splenocytogramme. The using of cytostatic drug abolishes but anabolic drug potentiates both activating and inhibiting influence of water Naftussya

    Interactive Effect of Residue Quality and Agroecologies Modulate Soil C- and N-Cycling Enzyme Activities, Microbial Gene Abundance, and Metabolic Quotient

    Get PDF
    Understanding interactive effect of agroecology explained by rainfall, temperature, elevation, and biochemical composition of residues on soil microbial abundance and functions is crucial for unraveling soil ecological processes. This study aimed to investigate how agroecology and residue quality influence enzymatic activities, gene abundance, and metabolic quotient (qCO2). A field experiment was conducted using Leucaena leucocephala (LL) (high-quality residue) and Acacia decurrens (AD) (low-quality residue) in soils of highland and midland agroecologies. These residues differed in decomposability, characterized by a ratio of (lignin + polyphenol)/N of 5.0 for high-quality residue versus 21.0 for low-quality residue. Two experimental setups were employed: soil with litter mixture in polyvinyl chloride (PVC) tubes and residues buried in the surface soil using litterbags. Soil samples were collected after 30, 120, and 270 days of incubation and analyzed for biochemical properties, enzyme activities, and the abundance of nitrifying and total archaea and bacteria. Soil respiration was also measured at different intervals in the field. qCO2 was calculated using microbial biomass (MBC) and daily respiration (DCO2). Linear mixed model (P < 0.05) revealed that combined factors of agroecologies and residue qualities affected enzymatic activities, microbial abundance, soil properties, and qCO2. Agroecological differences exerted a greater influence than residue qualities. Positive and negative significant correlations (P < 0.05, r = 0.27 to 0.67) were found between different C and N pools as well as enzymatic activities. Positive correlations (P < 0.05) were observed between the abundance of total bacteria, total archaea, and ammonia-oxidizing bacteria versus leucine-aminopeptidases. qCO2 was influenced more by β-xylosidase, leucine-aminopeptidases, and thermolysin-like neutral metalloproteases (TLP) than by β-D-glucosidase and β-D-cellobiohydrolase. Leucine-aminopeptidases and TLP were identified as rate-limiting factors for protein and peptide decomposition, while β-xylosidase controlled hemicellulose degradation. In summary, this study provides insights into the intricate relationships between agroecology, residue quality, enzymatic activities, and microbial communities, shedding light on key processes governing soil ecological functions

    Influence of landscape position on sorghum yield response to different nutrient sources and soil properties in the semi-arid tropical environment

    Get PDF
    Understanding the response of crops to nutrient applications in undulating landscapes is imperative to improve nutrient use efficiency and crop yield. This study aimed to identify sorghum yield-limiting nutrients and characterize soil properties targeting landscape positions. The field experiments were conducted across 52 sites in four districts, covering three distinct landscape positions during the 2020 and 2022 cropping seasons. The treatments were All-blended, All- compound, All- individual, 150% of All- blended, All- blended-K, All- blended-S, All-blended-Zn, All -blended-B, recommended NP, 50% of All -blended, and control (no fertilizer). Treatment sequencing was randomized using a complete block design under foot slope (FS), mid-slope (MS), and hillslope (HS) positions. Results revealed that landscape position significantly affected the growth and yield of sorghum. Significantly higher yields were obtained from foot slopes than mid-slope and hillslope positions. Yield response to the application of nutrients significantly decreased with increasing slope. Overall, yield among all landscape positions was in the decreasing order of FS>MS>HS. The application of nutrients at different rates significantly improved sorghum total biomass and grain yield. Raising the all-blended treatment rate by 50% increased sorghum yield by 44% and 147% over the application of 50% of all nutrients and the unfertilized control treatment, respectively. Statistically significant yield differences were not observed among blended, compound, and separate applications of nutrients. The omission of K, S, Zn, and B did not show a significant variation in yield over the recommended NP fertilizer. The results of soil analysis results revealed that N and P are the most commonly deficient nutrients in sorghum-growing areas. The mean average volumetric soil moisture content ranged from 5.9-28.7% across landscape positions, with the highest at the foot slope and lowest at the hillslope position. Further research is suggested to determine economically optimum N and P rates across the three landscape positions

    Targeting nutrient sources and forms to identify yield-limiting nutrients for wheat under contrasting rainfall regimes and landscape positions in mixed-farming systems

    Get PDF
    Wheat yield gap in Ethiopia is high due to low nutrient availability, soil heterogeneity, undulating landscape, and climate. A study was conducted to identify yield-limiting nutrients for wheat yield under varying landscape positions and rainfall regimes. The treatments included all nutrients in blended (All-Blend), compound (All-Comp), and individual (All-Ind) forms containing N, P, K, S, Zn, and B, while K, S, Zn, and B omitted treatments were (All-Blend)-K, (All-Blend)-S, (All-Blend)-Zn, and (All-Blend)-B. Besides, NP only, 50 and 150% of the rate of all nutrients in the blended form (All-Blend), and a control without any nutrients were included. Results showed that the highest yield was obtained from the application of 150% of All-Blend across landscape positions and rainfall regimes, with grain yield improvement of 109.5% (2.54 t ha−1) by applying 150% of All-Blend under the foot slope position and high rainfall regime compared to the control and yield improvement of 72.5% under the low rainfall regime. With the control treatment grain yield was lower by 27–70% across landscape positions and rainfall regimes. The grain yield penalties due to K, S, Zn, and B omission were 0.54–9% over landscape positions and rainfall regimes compared to applying All-Blend, implying that the omission of K, S, Zn, and B were not yield-limiting nutrients for wheat production in the study areas. Thus, it will be crucial to consider landscape strata and rainfall regimes to optimize NP rates. Further study is also suggested as nutrient applications in blended, compound, or individual forms are inadequate to conclude

    Landscape-based nutrient application in wheat and teff mixed farming systems of Ethiopia: farmer and extension agent demand driven approach

    Get PDF
    Introduction: Adapting fertilizer use is crucial if smallholder agroecosystems are to attain the sustainable development goals of zero hunger and agroecosystem resilience. Poor soil health and nutrient variability characterize the smallholder farming systems. However, the current research at the field scale does not account for nutrient variability across landscape positions, posing significant challenges for targeted nutrient management interventions. The purpose of this research was to create a demand-driven and co-development approach for diagnosing farmer nutrient management practices and determining landscape-specific (hillslope, mid-slope, and foot slope) fertilizer applications for teff and wheat. Method: A landscape segmentation approach was aimed to address gaps in farm-scale nutrient management research as well as the limitations of blanket recommendations to meet local nutrient requirements. This approach incorporates the concept of interconnected socio-technical systems as well as the concepts and procedures of co-development. A smart mobile app was used by extension agents to generate crop-specific decision rules at the landscape scale and forward the specific fertilizer applications to target farmers through SMS messages or print formats. Results and discussion: The findings reveal that farmers apply more fertilizer to hillslopes and less to mid- and foot slopes. However, landscape-specific fertilizer application guided by crop-specific decision rules via mobile applications resulted in much higher yield improvements, 23% and 56% at foot slopes and 21% and 6.5% at mid slopes for wheat and teff, respectively. The optimized net benefit per hectare increase over the current extension recommendation was 176and176 and 333 at foot slopes and 159and159 and 64 at mid slopes for wheat and teff (average of 90and90 and 107 for wheat and teff), respectively. The results of the net benefit-to-cost ratio (BCR) demonstrated that applying landscape-targeted fertilizer resulted in an optimum return on investment (10.0netprofitper10.0 net profit per 1.0 investment) while also enhancing nutrient use efficiency across the three landscape positions. Farmers are now cognizant of the need to reduce fertilizer rates on hillslopes while increasing them on parcels at mid- and foot-slope landscapes, which have higher responses and profits. As a result, applying digital advisory to optimize landscape-targeted fertilizer management gives agronomic, economic, and environmental benefits. The outcomes results of the innovation also contribute to overcoming site-specific yield gaps and low nutrient use efficiency, they have the potential to be scaled if complementing innovations and scaling factors are integrated

    Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Up-to-date estimates of stroke burden and attributable risks and their trends at global, regional, and national levels are essential for evidence-based health care, prevention, and resource allocation planning. We aimed to provide such estimates for the period 1990–2021. Methods: We estimated incidence, prevalence, death, and disability-adjusted life-year (DALY) counts and age-standardised rates per 100 000 people per year for overall stroke, ischaemic stroke, intracerebral haemorrhage, and subarachnoid haemorrhage, for 204 countries and territories from 1990 to 2021. We also calculated burden of stroke attributable to 23 risk factors and six risk clusters (air pollution, tobacco smoking, behavioural, dietary, environmental, and metabolic risks) at the global and regional levels (21 GBD regions and Socio-demographic Index [SDI] quintiles), using the standard GBD methodology. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline. Findings: In 2021, stroke was the third most common GBD level 3 cause of death (7·3 million [95% UI 6·6–7·8] deaths; 10·7% [9·8–11·3] of all deaths) after ischaemic heart disease and COVID-19, and the fourth most common cause of DALYs (160·5 million [147·8–171·6] DALYs; 5·6% [5·0–6·1] of all DALYs). In 2021, there were 93·8 million (89·0–99·3) prevalent and 11·9 million (10·7–13·2) incident strokes. We found disparities in stroke burden and risk factors by GBD region, country or territory, and SDI, as well as a stagnation in the reduction of incidence from 2015 onwards, and even some increases in the stroke incidence, death, prevalence, and DALY rates in southeast Asia, east Asia, and Oceania, countries with lower SDI, and people younger than 70 years. Globally, ischaemic stroke constituted 65·3% (62·4–67·7), intracerebral haemorrhage constituted 28·8% (28·3–28·8), and subarachnoid haemorrhage constituted 5·8% (5·7–6·0) of incident strokes. There were substantial increases in DALYs attributable to high BMI (88·2% [53·4–117·7]), high ambient temperature (72·4% [51·1 to 179·5]), high fasting plasma glucose (32·1% [26·7–38·1]), diet high in sugar-sweetened beverages (23·4% [12·7–35·7]), low physical activity (11·3% [1·8–34·9]), high systolic blood pressure (6·7% [2·5–11·6]), lead exposure (6·5% [4·5–11·2]), and diet low in omega-6 polyunsaturated fatty acids (5·3% [0·5–10·5]). Interpretation: Stroke burden has increased from 1990 to 2021, and the contribution of several risk factors has also increased. Effective, accessible, and affordable measures to improve stroke surveillance, prevention (with the emphasis on blood pressure, lifestyle, and environmental factors), acute care, and rehabilitation need to be urgently implemented across all countries to reduce stroke burden. Funding: Bill &amp; Melinda Gates Foundation

    Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: findings from the Global Burden of Disease Study 2021

    Get PDF
    Background: Anaemia is a major health problem worldwide. Global estimates of anaemia burden are crucial for developing appropriate interventions to meet current international targets for disease mitigation. We describe the prevalence, years lived with disability, and trends of anaemia and its underlying causes in 204 countries and territories. Methods: We estimated population-level distributions of haemoglobin concentration by age and sex for each location from 1990 to 2021. We then calculated anaemia burden by severity and associated years lived with disability (YLDs). With data on prevalence of the causes of anaemia and associated cause-specific shifts in haemoglobin concentrations, we modelled the proportion of anaemia attributed to 37 underlying causes for all locations, years, and demographics in the Global Burden of Disease Study 2021. Findings: In 2021, the global prevalence of anaemia across all ages was 24·3% (95% uncertainty interval [UI] 23·9–24·7), corresponding to 1·92 billion (1·89–1·95) prevalent cases, compared with a prevalence of 28·2% (27·8–28·5) and 1·50 billion (1·48–1·52) prevalent cases in 1990. Large variations were observed in anaemia burden by age, sex, and geography, with children younger than 5 years, women, and countries in sub-Saharan Africa and south Asia being particularly affected. Anaemia caused 52·0 million (35·1–75·1) YLDs in 2021, and the YLD rate due to anaemia declined with increasing Socio-demographic Index. The most common causes of anaemia YLDs in 2021 were dietary iron deficiency (cause-specific anaemia YLD rate per 100 000 population: 422·4 [95% UI 286·1–612·9]), haemoglobinopathies and haemolytic anaemias (89·0 [58·2–123·7]), and other neglected tropical diseases (36·3 [24·4–52·8]), collectively accounting for 84·7% (84·1–85·2) of anaemia YLDs. Interpretation: Anaemia remains a substantial global health challenge, with persistent disparities according to age, sex, and geography. Estimates of cause-specific anaemia burden can be used to design locally relevant health interventions aimed at improving anaemia management and prevention. Funding: Bill &amp; Melinda Gates Foundation

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill &amp; Melinda Gates Foundation

    Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Funding: Bill &amp; Melinda Gates Foundation
    corecore