3,247 research outputs found

    Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    Get PDF
    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia

    Retinal degeneration is rescued in transgenic rd mice by expression of the cGMP phosphodiesterase ß subunit

    Get PDF
    The ß subunit of the cGMP phosphodiesterase (PDE) gene has been identified as the candidate gene for retinal degeneration in the rd mouse. To study the molecular mechanisms underlying degeneration and the potential for gene repair, we have expressed a functional bovine cGMP PDE ß subunit in transgenic rd mice. One transgenic mouse line showed complete photoreceptor rescue across the entire span of the retina. A second independently derived line showed partial rescue in which photoreceptors in the superior but not the inferior hemisphere of the retina were rescued. In the latter animals, intermediate stages of degeneration were observed in the transition zone between rescued and diseased photoreceptors. Pathologic changes in the retina ranged from vesiculation of the basalmost outer segment discs in otherwise structurally intact rod cells to photoreceptors with highly disorganized outer segments and intact inner segments. Totally or partially rescued retinas showed a corresponding restoration of cGMP PDE activity, whereas nonrescued retinas had minimal enzyme activity, characteristic of the rd phenotype. These transgenic animals provide models for studying the molecular basis of retinal degenerative disease and conclusively demonstrate that the phenotype of rd mice is produced by a defect in the ß subunit of cGMP PDE

    Can rates of ocean primary production and biological carbon export be related through their probability distributions?

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Global Biogeochemical Cycles 32 (2018): 954-970, doi:10.1029/2017GB005797.We describe the basis of a theory for interpreting measurements of two key biogeochemical fluxes—primary production by phytoplankton (p, μg C · L−1 · day−1) and biological carbon export from the surface ocean by sinking particles (f, mg C · m−2 · day−1)—in terms of their probability distributions. Given that p and f are mechanistically linked but variable and effectively measured on different scales, we hypothesize that a quantitative relationship emerges between collections of the two measurements. Motivated by the many subprocesses driving production and export, we take as a null model that large‐scale distributions of p and f are lognormal. We then show that compilations of p and f measurements are consistent with this hypothesis. The compilation of p measurements is extensive enough to subregion by biome, basin, depth, or season; these subsets are also well described by lognormals, whose log‐moments sort predictably. Informed by the lognormality of both p and f we infer a statistical scaling relationship between the two quantities and derive a linear relationship between the log‐moments of their distributions. We find agreement between two independent estimates of the slope and intercept of this line and show that the distribution of f measurements is consistent with predictions made from the moments of the p distribution. These results illustrate the utility of a distributional approach to biogeochemical fluxes. We close by describing potential uses and challenges for the further development of such an approach.National Science Foundation Grant Number: OCE-1315201; Simons Foundation Grant Numbers: 329108, 553242; National Aeronautics and Space Administration Grant Numbers: NNX16AR47G, NNX16AR49

    N-Methylimidazole Promotes The Reaction Of Homophthalic Anhydride With Imines

    Get PDF
    The addition of N-methylimidazole (NMI) to the reaction of homophthalic anhydride with imines such as pyridine-3-carboxaldehyde-N-trifluoroethylimine (9) reduces the amount of elimination byproduct and improves the yield of the formal cycloadduct, tetrahydroisoquinolonic carboxylate 10. Carboxanilides of such compounds are of interest as potential antimalarial agents. A mechanism that rationalizes the role of NMI is proposed, and a gram-scale procedure for the synthesis and resolution of 10 is also described

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure

    An evolvable space telescope for future astronomical missions

    Get PDF
    Astronomical flagship missions after JWST will require affordable space telescopes and science instruments. Innovative spacecraft-electro-opto-mechanical system architectures matched to the science requirements are needed for observations for exoplanet characterization, cosmology, dark energy, galactic evolution formation of stars and planets, and many other research areas. The needs and requirements to perform this science will continue to drive us toward larger and larger apertures. Recent technology developments in precision station keeping of spacecraft, interplanetary transfer orbits, wavefront/sensing and control, laser engineering, macroscopic application of nano-technology, lossless optical designs, deployed structures, thermal management, interferometry, detectors and signal processing enable innovative telescope/system architectures with break-through performance. Unfortunately, NASA’s budget for Astrophysics is unlikely to be able to support the funding required for the 8 m to 16 m telescopes that have been studied as a follow-on to JWST using similar development/assembly approaches without decimating the rest of the Astrophysics Division’s budget. Consequently, we have been examining the feasibility of developing an “Evolvable Space Telescope” that would begin as a 3 to 4 m telescope when placed on orbit and then periodically be augmented with additional mirror segments, structures, and newer instruments to evolve the telescope and achieve the performance of a 16 m or larger space telescope. This paper reviews the approach for such a mission and identifies and discusses candidate architectures

    An evolvable space telescope for future astronomical missions 2015 update

    Get PDF
    In 2014 we presented a concept for an Evolvable Space Telescope (EST) that was assembled on orbit in 3 stages, growing from a 4x12 meter telescope in Stage 1, to a 12-meter filled aperture in Stage 2, and then to a 20-meter filled aperture in Stage 3. Stage 1 is launched as a fully functional telescope and begins gathering science data immediately after checkout on orbit. This observatory is then periodically augmented in space with additional mirror segments, structures, and newer instruments to evolve the telescope over the years to a 20-meter space telescope. In this 2015 update of EST we focus upon three items: 1) a restructured Stage 1 EST with three mirror segments forming an off-axis telescope (half a 12-meter filled aperture); 2) more details on the value and architecture of the prime focus instrument accommodation; and 3) a more in depth discussion of the essential in-space infrastructure, early ground testing and a concept for an International Space Station testbed called MoDEST. In addition to the EST discussions we introduce a different alternative telescope architecture: a Rotating Synthetic Aperture (RSA). This is a rectangular primary mirror that can be rotated to fill the UV-plane. The original concept was developed by Raytheon Space and Airborne Systems for non-astronomical applications. In collaboration with Raytheon we have begun to explore the RSA approach as an astronomical space telescope and have initiated studies of science and cost performance

    Weakly--exceptional quotient singularities

    Get PDF
    A singularity is said to be weakly--exceptional if it has a unique purely log terminal blow up. In dimension 22, V. Shokurov proved that weakly--exceptional quotient singularities are exactly those of types DnD_{n}, E6E_{6}, E7E_{7}, E8E_{8}. This paper classifies the weakly--exceptional quotient singularities in dimensions 33 and 44

    Neuro-evolution Methods for Designing Emergent Specialization

    Get PDF
    This research applies the Collective Specialization Neuro-Evolution (CONE) method to the problem of evolving neural controllers in a simulated multi-robot system. The multi-robot system consists of multiple pursuer (predator) robots, and a single evader (prey) robot. The CONE method is designed to facilitate behavioral specialization in order to increase task performance in collective behavior solutions. Pursuit-Evasion is a task that benefits from behavioral specialization. The performance of prey-capture strategies derived by the CONE method, are compared to those derived by the Enforced Sub-Populations (ESP) method. Results indicate that the CONE method effectively facilitates behavioral specialization in the team of pursuer robots. This specialization aids in the derivation of robust prey-capture strategies. Comparatively, ESP was found to be not as appropriate for facilitating behavioral specialization and effective prey-capture behaviors

    Using binary stars to bound the mass of the graviton

    Get PDF
    Interacting white dwarf binary star systems, including helium cataclysmic variable (HeCV) systems, are expected to be strong sources of gravitational radiation, and should be detectable by proposed space-based laser interferometer gravitational wave observatories such as LISA. Several HeCV star systems are presently known and can be studied optically, which will allow electromagnetic and gravitational wave observations to be correlated. Comparisons of the phases of a gravitational wave signal and the orbital light curve from an interacting binary white dwarf star system can be used to bound the mass of the graviton. Observations of typical HeCV systems by LISA could potentially yield an upper bound on the inverse mass of the graviton as strong as h/mg=λg>1×1015h/m_{g} = \lambda_{g} > 1 \times 10^{15} km (mg<1×1024m_{g} < 1 \times 10^{-24} eV), more than two orders of magnitude better than present solar system derived bounds.Comment: 21 pages plus 4 figures; ReVTe
    corecore