796 research outputs found
Recommended from our members
Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria
The discovery of diverse codon reassignment events has demonstrated that the canonical genetic code is not universal. Studying coding reassignment at the molecular level is critical for understanding genetic code evolution, and provides clues to genetic code manipulation in synthetic biology. Here we report a novel reassignment event in the mitochondria of Ashbya (Eremothecium) gossypii, a filamentous-growing plant pathogen related to yeast (Saccharomycetaceae). Bioinformatics studies of conserved positions in mitochondrial DNA-encoded proteins suggest that CUU and CUA codons correspond to alanine in A. gossypii, instead of leucine in the standard code or threonine in yeast mitochondria. Reassignment of CUA to Ala was confirmed at the protein level by mass spectrometry. We further demonstrate that a predicted is transcribed and accurately processed in vivo, and is responsible for Ala reassignment. Enzymatic studies reveal that is efficiently recognized by A. gossypii mitochondrial alanyl-tRNA synthetase (AgAlaRS). AlaRS typically recognizes the G3:U70 base pair of tRNAAla; a G3A change in Ashbya abolishes its recognition by AgAlaRS. Conversely, an A3G mutation in Saccharomyces cerevisiae confers tRNA recognition by AgAlaRS. Our work highlights the dynamic feature of natural genetic codes in mitochondria, and the relative simplicity by which tRNA identity may be switched
Temperature dependence of Vortex Charges in High Temperature Superconductors
Using a model Hamiltonian with d-wave superconductivity and competing
antiferromagnetic (AF) interactions, the temperature (T) dependence of the
vortex charge in high T_c superconductors is investigated by numerically
solving the Bogoliubov-de Gennes equations. The strength of the induced AF
order inside the vortex core is T dependent. The vortex charge could be
negative when the AF order with sufficient strength is present at low
temperatures. At higher temperatures, the AF order may be completely suppressed
and the vortex charge becomes positive. A first order like transition in the T
dependent vortex charge is seen near the critical temperature T_{AF}. For
underdoped sample, the spatial profiles of the induced spin-density wave and
charge-density wave orders could have stripe like structures at T < T_s, and
change to two-dimensional isotropic ones at T > T_s. As a result, a vortex
charge discontinuity occurs at T_s.Comment: 5 pages, 5 figure
Upper critical field calculations for the high critical temperature superconductors considering inhomogeneities
We perform calculations to obtain the curve of high temperature
superconductors (HTSC). We consider explicitly the fact that the HTSC possess
intrinsic inhomogeneities by taking into account a non uniform charge density
. The transition to a coherent superconducting phase at a critical
temperature corresponds to a percolation threshold among different
superconducting regions, each one characterized by a given .
Within this model we calculate the upper critical field by means of an
average linearized Ginzburg-Landau (GL) equation to take into account the
distribution of local superconducting temperatures . This
approach explains some of the anomalies associated with and why
several properties like the Meissner and Nernst effects are detected at
temperatures much higher than .Comment: Latex text, add reference
Superconducting Fluctuation and Pseudogap in Disordered Short Coherence Length Superconductor
We investigate the role of disorder on the superconducting (SC) fluctuation
in short coherence length d-wave superconductors. The particular intetest is
focused on the disorder-induced microscopic inhomogeneity of SC fluctuation and
its effect on the pseudogap phenomena. We formulate the self-consistent 1-loop
order theory for the SC fluctuation in inhomogeneous systems and analyze the
disordered -- model. The SC correlation function, electronic DOS and
the critical temperature are estimated. The SC fluctuation is localized like a
nanoscale granular structure when the coherence length is short, namely the
transition temperature is high. This is contrasted to the long coherence length
superconductors where the order parameter is almost uniform in the microscopic
scale. In the former case, the SC fluctuation is enhanced by the disorder in
contrast to the Abrikosov-Gorkov theory. These results are consistent with the
STM, NMR and transport measurements in high- cuprates and illuminate
the essential role of the microscopic inhomogeneity. We calculate the spacial
dependence of DOS around the single impurity and discuss the consistency with
the NMR measurements
The Dependence of the Superconducting Transition Temperature of Organic Molecular Crystals on Intrinsically Non-Magnetic Disorder: a Signature of either Unconventional Superconductivity or Novel Local Magnetic Moment Formation
We give a theoretical analysis of published experimental studies of the
effects of impurities and disorder on the superconducting transition
temperature, T_c, of the organic molecular crystals kappa-ET_2X and beta-ET_2X
(where ET is bis(ethylenedithio)tetrathiafulvalene and X is an anion eg I_3).
The Abrikosov-Gorkov (AG) formula describes the suppression of T_c both by
magnetic impurities in singlet superconductors, including s-wave
superconductors and by non-magnetic impurities in a non-s-wave superconductor.
We show that various sources of disorder lead to the suppression of T_c as
described by the AG formula. This is confirmed by the excellent fit to the
data, the fact that these materials are in the clean limit and the excellent
agreement between the value of the interlayer hopping integral, t_perp,
calculated from this fit and the value of t_perp found from angular-dependant
magnetoresistance and quantum oscillation experiments. If the disorder is, as
seems most likely, non-magnetic then the pairing state cannot be s-wave. We
show that the cooling rate dependence of the magnetisation is inconsistent with
paramagnetic impurities. Triplet pairing is ruled out by several experiments.
If the disorder is non-magnetic then this implies that l>=2, in which case
Occam's razor suggests that d-wave pairing is realised. Given the proximity of
these materials to an antiferromagnetic Mott transition, it is possible that
the disorder leads to the formation of local magnetic moments via some novel
mechanism. Thus we conclude that either kappa-ET_2X and beta-ET_2X are d-wave
superconductors or else they display a novel mechanism for the formation of
localised moments. We suggest systematic experiments to differentiate between
these scenarios.Comment: 18 pages, 5 figure
Inhomogeneous d-wave superconducting state of a doped Mott insulator
Recent scanning tunneling microscope (STM) measurements discovered remarkable
electronic inhomogeneity, i.e. nano-scale spatial variations of the local
density of states (LDOS) and the superconducting energy gap, in the high-Tc
superconductor BSCCO. Based on the experimental findings we conjectured that
the inhomogeneity arises from variations in local oxygen doping level and may
be generic of doped Mott insulators which behave rather unconventionally in
screening the dopant ionic potentials at atomic scales comparable to the short
coherence length. Here, we provide theoretical support for this picture. We
study a doped Mott insulator within a generalized t-J model, where doping is
accompanied by ionic Coulomb potentials centered in the BiO plane. We calculate
the LDOS spectrum, the integrated LDOS, and the local superconducting gap, make
detailed comparisons to experiments, and find remarkable agreement with the
experimental data. We emphasize the unconventional screening in a doped Mott
insulator and show that nonlinear screening dominates at nano-meter scales
which is the origin of the electronic inhomogeneity. It leads to strong
inhomogeneous redistribution of the local hole density and promotes the notion
of a local doping concentration. We find that the inhomogeneity structure
manifests itself at all energy scales in the STM tunneling differential
conductance, and elucidate the similarity and the differences between the data
obtained in the constant tunneling current mode and the same data normalized to
reflect constant tip-to-sample distance. We also discuss the underdoped case
where nonlinear screening of the ionic potential turns the spatial electronic
structure into a percolative mixture of patches with smaller pairing gaps
embedded in a background with larger gaps to single particle excitations.Comment: 19 pages, final versio
The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region
To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs ∼40–700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, ∼3 kb, inverted repeat and several potentially stable ∼40–80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved
Entropy of vortex cores on the border of the superconductor-to-insulator transition in an underdoped cuprate
We present a study of Nernst effect in underdoped in
magnetic fields as high as 28T. At high fields, a sizeable Nernst signal was
found to persist in presence of a field-induced non-metallic resistivity. By
simultaneously measuring resistivity and the Nernst coefficient, we extract the
entropy of vortex cores in the vicinity of this field-induced
superconductor-insulator transition. Moreover, the temperature dependence of
the thermo-electric Hall angle provides strong constraints on the possible
origins of the finite Nernst signal above , as recently discovered by Xu
et al.Comment: 5 Pages inculding 4 figure
- …
