18,519 research outputs found
Mars: The Viking discoveries
An overview of the Viking Mars probe is presented. The Viking spacecraft is described and a brief history of the earlier observations and exploration of Mars is provided. A number of the Viking photographs of the Martian surface are presented and a discussion of the experiments Viking performed including a confirmation of the general theory of relativity are reported. Martian surface chemistry is discussed and experiments to study the weather on Mars are reported
Duality Between the Weak and Strong Interaction Limits for Randomly Interacting Fermions
We establish the existence of a duality transformation for generic models of
interacting fermions with two-body interactions. The eigenstates at weak and
strong interaction U possess similar statistical properties when expressed in
the U=0 and U=infinity eigenstates bases respectively. This implies the
existence of a duality point U_d where the eigenstates have the same spreading
in both bases. U_d is surrounded by an interval of finite width which is
characterized by a non Lorentzian spreading of the strength function in both
bases. Scaling arguments predict the survival of this intermediate regime as
the number of particles is increased.Comment: RevTex4, 4 pages, 4 figures. Accepted for publication at Phys. Rev.
Let
Underlying symmetries of realistic interactions and the nuclear many-body problem
The present study brings forward important information, within the framework
of spectral distribution theory, about the types of forces that dominate three
realistic interactions, CD-Bonn, CDBonn+ 3terms and GXPF1, in nuclei and their
ability to account for many-particle effects such as the formation of
correlated nucleon pairs and enhanced quadrupole collective modes.
Like-particle and proton-neutron isovector pairing correlations are described
microscopically by a model interaction with Sp(4) dynamical symmetry, which is
extended to include an additional quadrupole-quadrupole interaction. The
analysis of the results for the 1f7/2 level shows that both CD-Bonn+3terms and
GXPF1 exhibit a well-developed pairing character compared to CD-Bonn, while the
latter appears to build up more (less) rotational isovector T = 1 (isoscalar T
= 0) collective features. Furthermore, the three realistic interactions are in
general found to correlate strongly with the pairing+quadrupole model
interaction, especially for the highest possible isospin group of states where
the model interaction can be used to provide a reasonable description of the
corresponding energy spectra.Comment: 12 pages, 4 figure
Loschmidt echoes in two-body random matrix ensembles
Fidelity decay is studied for quantum many-body systems with a dominant
independent particle Hamiltonian resulting e.g. from a mean field theory with a
weak two-body interaction. The diagonal terms of the interaction are included
in the unperturbed Hamiltonian, while the off-diagonal terms constitute the
perturbation that distorts the echo. We give the linear response solution for
this problem in a random matrix framework. While the ensemble average shows no
surprising behavior, we find that the typical ensemble member as represented by
the median displays a very slow fidelity decay known as ``freeze''. Numerical
calculations confirm this result and show, that the ground state even on
average displays the freeze. This may contribute to explanation of the
``unreasonable'' success of mean field theories.Comment: 9 pages, 5 figures (6 eps files), RevTex; v2: slight modifications
following referees' suggestion
1/f noise in the Two-Body Random Ensemble
We show that the spectral fluctuations of the Two-Body Random Ensemble (TBRE)
exhibit 1/f noise. This result supports a recent conjecture stating that
chaotic quantum systems are characterized by 1/f noise in their energy level
fluctuations. After suitable individual averaging, we also study the
distribution of the exponent \alpha in the 1/f^{\alpha} noise for the
individual members of the ensemble. Almost all the exponents lie inside a
narrow interval around \alpha=1 suggesting that also individual members exhibit
1/f noise, provided they are individually unfoldedComment: 4 pages, 3 figures, Accepted for publication in Phys. Rev.
Improved linings for integrating spheres
Sphere surface is covered with plain weave of glass fibers coated with polytetrafluoroethylene and one or two layers of magnesium oxide vapor. The resultant lining is suitable for measurement of radiation in the ultraviolet, visible, and near-infrared wavelengths, is not damage prone, and is easily cleaned
On Vague Computers
Vagueness is something everyone is familiar with. In fact, most people think
that vagueness is closely related to language and exists only there. However,
vagueness is a property of the physical world. Quantum computers harness
superposition and entanglement to perform their computational tasks. Both
superposition and entanglement are vague processes. Thus quantum computers,
which process exact data without "exploiting" vagueness, are actually vague
computers
Statistical Theory of Parity Nonconservation in Compound Nuclei
We present the first application of statistical spectroscopy to study the
root-mean-square value of the parity nonconserving (PNC) interaction matrix
element M determined experimentally by scattering longitudinally polarized
neutrons from compound nuclei. Our effective PNC interaction consists of a
standard two-body meson-exchange piece and a doorway term to account for
spin-flip excitations. Strength functions are calculated using realistic
single-particle energies and a residual strong interaction adjusted to fit the
experimental density of states for the targets, ^{238} U for A\sim 230 and
^{104,105,106,108} Pd for A\sim 100. Using the standard Desplanques, Donoghue,
and Holstein estimates of the weak PNC meson-nucleon coupling constants, we
find that M is about a factor of 3 smaller than the experimental value for
^{238} U and about a factor of 1.7 smaller for Pd. The significance of this
result for refining the empirical determination of the weak coupling constants
is discussed.Comment: Latex file, no Fig
Interactions and Disorder in Quantum Dots: Instabilities and Phase Transitions
Using a fermionic renormalization group approach we analyse a model where the
electrons diffusing on a quantum dot interact via Fermi-liquid interactions.
Describing the single-particle states by Random Matrix Theory, we find that
interactions can induce phase transitions (or crossovers for finite systems) to
regimes where fluctuations and collective effects dominate at low energies.
Implications for experiments and numerical work on quantum dots are discussed.Comment: 4 pages, 1 figure; version to appear in Phys Rev Letter
- …
