716 research outputs found
All Optical Formation of an Atomic Bose-Einstein Condensate
We have created a Bose-Einstein condensate of 87Rb atoms directly in an
optical trap. We employ a quasi-electrostatic dipole force trap formed by two
crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled
cloud of atoms results in initial phase space densities of ~1/200.
Evaporatively cooling through the BEC transition is achieved by lowering the
power in the trapping beams over ~ 2 s. The resulting condensates are F=1
spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Evanescent-wave trapping and evaporative cooling of an atomic gas near two-dimensionality
A dense gas of cesium atoms at the crossover to two-dimensionality is
prepared in a highly anisotropic surface trap that is realized with two
evanescent light waves. Temperatures as low as 100nK are reached with 20.000
atoms at a phase-space density close to 0.1. The lowest quantum state in the
tightly confined direction is populated by more than 60%. The system offers
intriguing prospects for future experiments on degenerate quantum gases in two
dimensions
Multiple micro-optical atom traps with a spherically aberrated laser beam
We report on the loading of atoms contained in a magneto-optic trap into
multiple optical traps formed within the focused beam of a CO_{2} laser. We
show that under certain circumstances it is possible to create a linear array
of dipole traps with well separated maxima. This is achieved by focusing the
laser beam through lenses uncorrected for spherical aberration. We demonstrate
that the separation between the micro-traps can be varied, a property which may
be useful in experiments which require the creation of entanglement between
atoms in different micro-traps. We suggest other experiments where an array of
these traps could be useful.Comment: 10 pages, 3 figure
All-Optical Production of a Degenerate Fermi Gas
We achieve degeneracy in a mixture of the two lowest hyperfine states of
Li by direct evaporation in a CO laser trap, yielding the first
all-optically produced degenerate Fermi gas. More than atoms are
confined at temperatures below K at full trap depth, where the Fermi
temperature for each state is K. This degenerate two-component mixture
is ideal for exploring mechanisms of superconductivity ranging from Cooper
pairing to Bose condensation of strongly bound pairs.Comment: 4 pgs RevTeX with 2 eps figs, to be published in Phys. Rev. Let
Motional Squashed States
We show that by using a feedback loop it is possible to reduce the
fluctuations in one quadrature of the vibrational degree of freedom of a
trapped ion below the quantum limit. The stationary state is not a proper
squeezed state, but rather a ``squashed'' state, since the uncertainty in the
orthogonal quadrature, which is larger than the standard quantum limit, is
unaffected by the feedback action.Comment: 8 pages, 2 figures, to appear in the special Issue "Quantum
Correlations and Fluctuations" of J. Opt.
Resolved-sideband Raman cooling to the ground state of an optical lattice
We trap neutral Cs atoms in a two-dimensional optical lattice and cool them
close to the zero-point of motion by resolved-sideband Raman cooling. Sideband
cooling occurs via transitions between the vibrational manifolds associated
with a pair of magnetic sublevels and the required Raman coupling is provided
by the lattice potential itself. We obtain mean vibrational excitations
\bar{n}_x \approx \bar{n}_y \approx 0.01, corresponding to a population \sim
98% in the vibrational ground state. Atoms in the ground state of an optical
lattice provide a new system in which to explore quantum state control and
subrecoil laser coolingComment: PDF file, 13 pages including 3 figure
Spinor Bosonic Atoms in Optical Lattices: Symmetry Breaking and Fractionalization
We study superfluid and Mott insulator phases of cold spin-1 Bose atoms with
antiferromagnetic interactions in an optical lattice, including a usual polar
condensate phase, a condensate of singlet pairs, a crystal spin nematic phase,
and a spin singlet crystal phase. We suggest a possibility of exotic
fractionalized phases of spinor BEC and discuss them in the language of
topological defect condensation and lattice gauge theory.Comment: 4 pages, 1 figure included; references adde
Quantum Logic Gates in Optical Lattices
We propose a new system for implementing quantum logic gates: neutral atoms
trapped in a very far-off-resonance optical lattice. Pairs of atoms are made to
occupy the same well by varying the polarization of the trapping lasers, and
then a near-resonant electric dipole is induced by an auxiliary laser. A
controlled-NOT can be implemented by conditioning the target atomic resonance
on a resolvable level shift induced by the control atom. Atoms interact only
during logical operations, thereby suppressing decoherence.Comment: Revised version, To appear in Phys. Rev. Lett. Three separate
postscript figure
Recommended from our members
The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.
Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM -/- patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors
- …
