5,317 research outputs found
Stellar winds driven by multi-line scattering
This paper presents a model of a radiation-driven stellar wind with overlapping spectral lines. It is based on the Castor, Abbott, and Klein (CAK) theory. The presence of overlapping lines allows a photon to be scattered many times in different lines. The properties of the wind at any point depend on the wavelength-averaged intensity, which in turn depends on the structure of the wind. A self-consistent wind model is found. The mass loss rate does not saturate as line overlap becomes more pronounced, but continues to increase. The terminal velocity is much larger than in the CAK model, while the velocity law is shallower. This model might help explain the massive winds from Wolf-Rayet stars
The geology and petrogenesis of the southern closepet granite
The Archaean Closepet Granite is a polyphase body intruding the Peninsular Gneiss Complex and the associated supracrustal rocks. The granite out-crop runs for nearly 500 km with an approximate width of 20 to 25 km and cut across the regional metamorphic structure passing from granulite facies in the South and green schist facies in the north. In the amphibolite-granulite facies transition zone the granite is intimately mixed with migmatites and charnockite. Field observations suggests that anatexis of Peninsular gneisses led to the formation of granite melt, and there is a space relationship between migmatite formation, charnockite development and production and emplacement of granite magma. Based on texture and cross cutting relationships four major granite phases are recognized: (1) Pyroxene bearing dark grey granite; (2) Porphyritec granite; (3) Equigranular grey granite; and (4) Equigranular pink granite. The granite is medium to coarse grained and exhibit hypidiomorphic granular to porphyritic texture. The modal composition varies from granite granodiorite to quartz monzonite. Geochemical variation of the granite suite is consistent with either fractional crystallization or partial melting, but in both the cases biotite plus feldspar must be involved as fractionating or residual phases during melting to account trace element chemistry. The trace element data has been plotted on discriminant diagrams, where majority of samples plot in volcanic arc and within plate, tectonic environments. The granite show distinct REE patterns with variable total REE content. The REE patterns and overall abundances suggests that the granite suite represents a product of partial melting of crustal source in which fractional crystallization operated in a limited number of cases
An LED pulser for measuring photomultiplier linearity
A light-emitting diode (LED) pulser for testing the low-rate response of a
photomultiplier tube (PMT) to scintillator-like pulses has been designed,
developed, and implemented. This pulser is intended to simulate 80 ns full
width at half maximum photon pulses over the dynamic range of the PMT, in order
to precisely determine PMT linearity. This particular design has the advantage
that, unlike many LED test rigs, it does not require the use of multiple
calibrated LEDs, making it insensitive to LED gain drifts. Instead, a
finite-difference measurement is made using two LEDs which need not be
calibrated with respect to one another. These measurements give a better than
1% mapping of the response function, allowing for the testing and development
of particularly linear PMT bases.Comment: 5 pages, 5 figure
Spectroscopy of Seven Cataclysmic Variables with Periods Above Five Hours
We present spectroscopy of seven cataclysmic variable stars with orbital
periods P(orb) greater than 5 hours, all but one of which are known to be dwarf
novae. Using radial velocity measurements we improve on previous orbital period
determinations, or derive periods for the first time. The stars and their
periods are
TT Crt, 0.2683522(5) d;
EZ Del, 0.2234(5) d;
LL Lyr, 0.249069(4) d;
UY Pup, 0.479269(7) d;
RY Ser, 0.3009(4) d;
CH UMa, 0.3431843(6) d; and
SDSS J081321+452809, 0.2890(4) d.
For each of the systems we detect the spectrum of the secondary star,
estimate its spectral type, and derive a distance based on the surface
brightness and Roche lobe constraints. In five systems we also measure the
radial velocity curve of the secondary star, estimate orbital inclinations, and
where possible estimate distances based on the MV(max) vs.P(orb) relation found
by Warner. In concordance with previous studies, we find that all the secondary
stars have, to varying degrees, cooler spectral types than would be expected if
they were on the main sequence at the measured orbital period.Comment: 25 pages, 2 figures, accepted for Publications of the Astronomical
Society of the Pacifi
First Simultaneous Optical and EUV Observations of the Quasi-Coherent Oscillations of SS Cygni
Using EUV photometry obtained with the Extreme Ultraviolet Explorer (EUVE)
satellite and UBVR optical photometry obtained with the 2.7-m telescope at
McDonald Observatory, we have detected quasi-coherent oscillations (so-called
``dwarf nova oscillations'') in the EUV and optical flux of the dwarf nova SS
Cygni during its 1996 October outburst. There are two new results from these
observations. First, we have for the first time observed ``frequency
doubling:'' during the rising branch of the outburst, the period of the EUV
oscillation was observed to jump from 6.59 s to 2.91 s. Second, we have for the
first time observed quasi-coherent oscillations simultaneously in the optical
and EUV. We find that the period and phase of the oscillations are the same in
the two wavebands, finally confirming the long-held assumption that the periods
of the optical and EUV/soft X-ray oscillations of dwarf novae are equal. The
UBV oscillations can be simply the Rayleigh-Jeans tail of the EUV oscillations
if the boundary layer temperature kT_bb <~ 15 eV and hence the luminosity L_bb
>~ 1.2e34 (d/75 pc)^2 erg/s (comparable to that of the accretion disk).
Otherwise, the lack of a phase delay between the EUV and optical oscillations
requires that the optical reprocessing site lies within the inner third of the
accretion disk. This is strikingly different from other cataclysmic variables,
where much or all of the disk contributes to the optical oscillations.Comment: 16 pages including 3 tables and 4 encapsulated postscript figures;
LaTeX format, uses aastex.cls; accepted on 2001 August 2 for publication in
The Astrophysical Journa
The role of intermolecular coupling in the photophysics of disordered organic semiconductors: Aggregate emission in regioregular polythiophene
We address the role of excitonic coulping on the nature of photoexcitations
in the conjugated polymer regioregular poly(3-hexylthiophene). By means of
temperature-dependent absorption and photoluminescence spectroscopy, we show
that optical emission is overwhelmingly dominated by weakly coupled
H-aggregates. The relative absorbance of the 0-0 and 0-1 vibronic peaks
provides a powerfully simple means to extract the magnitude of the
intermolecular coupling energy, approximately 5 and 30 meV for films spun from
isodurene and chloroform solutions respectively.Comment: 10 pages, 4 figures, published in Phys. Rev. Let
The Nature of the Secondary Star in the Black Hole X-Ray Transient V616 Mon (=A0620-00)
We have used NIRSPEC on Keck II to obtain -band spectroscopy of the low
mass X-ray binary V616 Mon (= A062000). V616 Mon is the proto-typical soft
x-ray transient containing a black hole primary. As such it is important to
constrain the masses of the binary components. The modeling of the infrared
observations of ellipsoidal variations in this system lead to a derived mass of
11.0 M_{\sun} for the black hole. The validity of this derivation has been
called into question due to the possiblity that the secondary star's spectral
energy distribution is contaminated by accretion disk emission (acting to
dilute the variations). Our new -band spectrum of V616 Mon reveals a
late-type K dwarf secondary star, but one that has very weak CO
absorption features. Comparison of V616 Mon with SS Cyg leads us to estimate
that the accretion disk supplies only a small amount of -band flux, and the
ellipsoidal variations are not seriously contaminated. If true, the derived
orbital inclination of V616 Mon is not greatly altered, and the mass of the
black hole remains large. A preliminary stellar atmosphere model for the
-band spectrum of V616 Mon reveals that the carbon abundance is
approximately 50% of the solar value. We conclude that the secondary star in
V616 Mon has either suffered serious contamination from the accretion of
supernova ejecta that created the black hole primary, or it is the stripped
remains of a formerly more massive secondary star, one in which the CNO cycle
had been active.Comment: 20 pages, 5 figure
New age data on the geological evolution of Southern India
The Peninsular Gneisses of Southern India developed over a period of several hundred Ma in the middle-to-late Archaean. Gneisses in the Gorur-Hassan area of southern Karnataka are the oldest recognized constituents: Beckinsale et al. reported a preliminary Rb-Sr whole-rock isochron age of 33558 + or - 66 Ma, but further Rb-Sr and Pb/Pb whole-rock isochron determinations indicate a slightly younger, though more precise age of ca 3305 Ma (R. D. Beckinsale, Pers. Comm.). It is well established that the Peninsular Gneisses constitute basement on which the Dharwar schist belts were deposited. Well-documented exposures of unconformities, with basal quartz pebble conglomerates of the Dharwar Supergroup overlying Peninsular Gneisses, have been reported from the Chikmagalur and Chitradurga areas, and basement gneisses in these two areas have been dated by Rb-Sr and Pb/Pb whole-rock isochron methods at ca 3150 Ma and ca 3000 Ma respectively. Dharwar supracrustal rocks of the Chitradurga schist belt are intruded by the Chitradurga Granite, dated by a Pb/Pb whole-rock isochron at 2605 + or - 18 Ma. These results indicate that the Dharwar Supergroup in the Chitradurga belt was deposited between 3000 Ma and 2600 Ma
Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes
We investigate hole transport in polymer light-emitting-diodes in which the
emissive layer is made of liquid-crystalline polymer chains aligned
perpendicular to the direction of transport. Calculations of the current as a
function of time via a random-walk model show excellent qualitative agreement
with experiments conducted on electroluminescent polyfluorene demonstrating
non-dispersive hole transport. The current exhibits a constant plateau as the
charge carriers move with a time-independent drift velocity, followed by a long
tail when they reach the collecting electrode. Variation of the parameters
within the model allows the investigation of the transition from non-dispersive
to dispersive transport in highly aligned polymers. It turns out that large
inter-chain hopping is required for non-dispersive hole transport and that
structural disorder obstructs the propagation of holes through the polymer
film.Comment: 4 pages, 5 figure
- …
